銳角三角形ABC中,若A=2B,則下列敘述正確的是( 。
①sin3B=sin2C;  
②tan
3B
2
tan
C
2
=1; 
π
6
<B<
π
4
; 
a
b
∈(
2
,
3
].
A、①②B、②③C、③④D、④①
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,正弦定理
專題:解三角形
分析:依題意,可得C=π-3B,利用二倍角的正弦、誘導(dǎo)公式、銳角三角形的性質(zhì)及正弦定理與余弦函數(shù)的性質(zhì)對(duì)①②③④四個(gè)選項(xiàng)逐一分析即可.
解答: 解:∵銳角三角形ABC中,A=2B,
∴C=π-(B+2B)=π-3B,
∴sinC=sin(π-3B)=sin3B,故①錯(cuò)誤;
∴tan
3B
2
tan
C
2
=tan
π-C
2
tan
C
2
=cot
C
2
tan
C
2
=1,故②正確;
又△ABC為銳角三角形,
0<B<
π
2
0<2B<
π
2
0<π-3B<
π
2
,解得:
π
6
<B<
π
4
,故③正確; 
π
6
<B<
π
4
,∴
2
2
<cosB<
3
2

由正弦定理可得,
a
b
=
sin2B
sinB
=2cosB∈(
2
,
3
),故④錯(cuò)誤;
綜上所述,敘述正確的是②③,
故選:B.
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查二倍角公式與誘導(dǎo)公式及正弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),
AO
=
OD
且λ
OA
+
OB
+
OC
=
0
,則實(shí)數(shù)λ=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足條件f(x+
3
2
)=-f(x),且函數(shù)y=f(x-
3
4
)是奇函數(shù),給出以下
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)對(duì)稱;
③函數(shù)f(x)是偶函數(shù):
④函數(shù)f(x)在R上是單調(diào)函數(shù).
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式|x+1|-|x+2|>m有解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-1]
B、(-∞,-1)
C、(-∞,1]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線l過(guò)F且與C交于A,B兩點(diǎn),若|AF|=3|BF|,則|AB|等于( 。
A、
5
2
B、
16
3
C、3
D、
17
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)等差數(shù)列的各項(xiàng)均不為0,且前4項(xiàng)是a,
x
2
,b,x,則
b
a
等于(  )
A、
1
2
B、
1
3
C、3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),x∈[-1,3]的圖象如圖所示,令g(x)=
x
-1
f(t)dt,x∈(-1,3],則g(x)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知a2=4,a4=8,則a6=( 。
A、16B、16或-16
C、32D、32或-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察以下5個(gè)等式:
-1=-1
-1+3=2
-1+3-5=-3
-1+3-5+7=4
-1+3-5+7-9=-5

照以上式子規(guī)律:
(1)寫出第6個(gè)等式,并猜想第n個(gè)等式;(n∈N*
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立.(n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案