精英家教網 > 高中數學 > 題目詳情
甲,乙二人沿同一條道路同時從A地向B地出發(fā),甲用速度v1與v2(v1≠v2)各走一半路程,乙用v1與v2各走全程所需時間的一半,試判斷甲,乙兩人
 
先到達B地.
考點:不等式比較大小
專題:不等式的解法及應用
分析:設從A地向B地的距離為s.可得t=
1
2
s
v1
+
1
2
s
v2
=
1
2
s(
1
v1
+
1
v2
)
.
1
2
t(v1+v2)=s,可得
t
t
=
(v1+v2)2
4v1v2
4v1v2
4v1v2
=1,即可得出.
解答: 解:設從A地向B地的距離為s.
則t=
1
2
s
v1
+
1
2
s
v2
=
1
2
s(
1
v1
+
1
v2
)

1
2
t(v1+v2)=s,∴t=
2s
v1+v2
,
t
t
=
(v1+v2)2
4v1v2
4v1v2
4v1v2
=1,
因此甲比乙到達B地用的時間多,
∴乙先到達B地.
故答案為:乙.
點評:本題考查了路程與速度時間直角的關系、基本不等式的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知一個幾何體的三視圖如圖所示,則該幾何體是( 。
A、圓柱B、三棱柱C、球D、四棱柱

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c-a)cosB-bcosA=0.
(1)若b=2,求△ABC的面積的最大值;    
(2)求
3
sinA+sin(C-
π
6
)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

10個相同的小球裝進編號為1、2、3的盒子內,無多余的小球且每個盒子內小球的個數不小于盒子的編號數,那么共有(  )種裝法.
A、12B、13C、14D、15

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC,內角A,B,C的對邊分別為a,b,c,向量x=(2sin
A
2
,-
3
),y=(2cos2
A
4
-1,cosA),且x⊥y.
(1)求角A的大。
(2)若a=
7
且△ABC的面積為
3
3
2
,求b+c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

古希臘畢達哥拉斯學派的數學家研究過各種多邊形數,如三角形數1,3,6,10,…,第n個三角形數為
n(n+1)
2
=
1
2
n2+
1
2
n,記第n個k邊形數為N(n,k)(k≥3),以下列出了部分k邊形數中第n個數的表達式:
三角形數   N(n,3)=
1
2
n2+
1
2
n,
正方形數   N(n,4)=n2,
五邊形數   N(n,5)=
3
2
n2+
1
2
n,

可以推測N(n,k)的表達式,由此計算N(3,6)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

從0,1,2,3,4,5這6個數字中取出不同的4個數字組成一個四位數,求
(1)有多少個不同的四位偶數;
(2)有多少個各數位上的數碼之和為奇數的四位數;
(3)所有這些四位數的個位數字的和是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)滿足:①f(1+x)=f(1-x);②在[1,+∞]上遞增;③x1>0,x2<0且x1+x2>2,則f(x1)與f(x2)的大小關系為( 。
A、f(x1)<f(x2
B、f(x1)=f(x2
C、f(x1)>f(x2
D、無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:

在區(qū)間(0,1)內隨機地取出兩個數,則兩數之和小于
5
6
的概率是
 

查看答案和解析>>

同步練習冊答案