分析 (1)取DC的中點(diǎn)E,連接BE,可證明四邊形ABED是平行四邊形,再利用勾股定理的逆定理可得BE⊥CD,即CD⊥AD,又側(cè)棱AA1⊥底面ABCD,可得AA1⊥DC,利用線面垂直的判定定理即可證明.
(2)由題意可與左右平面ADD1A1,BCC1B1,上或下面ABCD,A1B1C1D1拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過比較即可得出f(k).
解答 (1)證明:取DC的中點(diǎn)E,連接BE,∵AB∥ED,AB=ED=3k,
∴四邊形ABED是平行四邊形,
∴BE∥AD,且BE=AD=4k,∴BE2+EC2=(4k)2+(3k)2=(5k)2=BC2,∴∠BEC=90°,∴BE⊥CD,
又∵BE∥AD,∴CD⊥AD.
∵側(cè)棱AA1⊥底面ABCD,∴AA1⊥CD,
∵AA1∩AD=A,∴CD⊥平面ADD1A1.
(2)解:由題意可與左右平面ADD1A1,BCC1B1,上或下面ABCD,A1B1C1D1拼接得到方案新四棱柱共有此4種不同方案.
寫出每一方案下的表面積,通過比較即可得出f(k)=$\left\{\begin{array}{l}{72{k}^{2}+26k,0<k≤\frac{5}{18}}\\{36{k}^{2}+36k,k>\frac{5}{18}}\end{array}\right.$.
點(diǎn)評 本題主要考查了線線、線面的位置關(guān)系、柱體的定義積表面積、勾股定理的逆定理等基礎(chǔ)知識(shí),考查了空間想象能力、推理能力和計(jì)算能力及化歸與轉(zhuǎn)化能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com