20.已知A,B,C是△ABC的三個(gè)內(nèi)角,設(shè)f(B)=4sinB•cos2($\frac{π}{4}$-$\frac{B}{2}$)+cos2B,若f(B)-m<2恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m<1B.m>-3C.m<3D.m>1

分析 化簡f(B)=2sinB+1,由f(B)-m<2恒成立得出m>f(B)-2恒成立,根據(jù)B的范圍解出f(B)-2的最大值極為m的最小值.

解答 解:f(B)=4sinB•$\frac{1+cos(\frac{π}{2}-B)}{2}$+cos2B=2sin2B+2sinB+1-2sin2B=2sinB+1.
∵f(B)-m<2恒成立,∴m>f(B)-2恒成立.
∵0<B<π,
∴f(B)的最大值為3,
∴m>3-2=1.
故選:D.

點(diǎn)評 本題考查了三角函數(shù)的恒等變換,函數(shù)恒成立問題與函數(shù)最值計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow a=(-1,1)$,向量$\overrightarrow b=(3,t)$,若$\overrightarrow b∥(\overrightarrow a+\overrightarrow b)$,則t=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x>0,y>0,lg2x+lg4y=lg2,則$\frac{1}{x}+\frac{1}{y}$的最小值是$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線ax+by=1與圓${x^2}+{y^2}=\frac{1}{4}$相交于不同的A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且$\overrightarrow{OA}•\overrightarrow{OB}$>0(O是坐標(biāo)原點(diǎn)),則a2+b2-2a的取值范圍為( 。
A.(1,9+4$\sqrt{2}$)B.(0,8+4$\sqrt{2}$)C.(1,1+2$\sqrt{2}$)D.(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,a4=12,則a1+a7=( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=kx-lnx 在區(qū)間[2,5]上單調(diào)遞增,則實(shí)數(shù)k的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.關(guān)于x的不等式$\frac{x+a}{{x}^{2}+4x+3}$>0的解集是(-3,-1)∪(2,+∞),則a的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了測得某塔的高度,在地面A處測得塔尖的仰角為30°,前進(jìn)200米后,到達(dá)B處,測得塔尖的仰角為60°,則塔高為( 。
A.$\frac{400}{3}$mB.$\frac{200}{3}$mC.200$\sqrt{3}$mD.100$\sqrt{3}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等腰梯形ABCD中,AB∥CD,CD=40,AD=40,則當(dāng)下底AB=80時(shí),梯形ABCD的面積最大.

查看答案和解析>>

同步練習(xí)冊答案