【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為4的正方形,PA⊥平面ABCD,E為PB中點,PB=4 .
(I)求證:PD∥面ACE;
(Ⅱ)求三棱錐E﹣ABC的體積。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若,求點D的坐標(biāo);
(2)問是否存在實數(shù)α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(,),且兩個焦點,的坐標(biāo)依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,求當(dāng)為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的前n項和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項公式;
(Ⅱ)若T3=21,求S3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)中心在坐標(biāo)原點,焦點在軸上的橢圓的左、右焦點分別為,右準(zhǔn)線與軸的交點為,.
(1)已知點在橢圓上,求實數(shù)的值;
(2)已知定點.
① 若橢圓上存在點,使得,求橢圓的離心率的取值范圍;
② 如圖,當(dāng)時,記為橢圓上的動點,直線分別與橢圓交于另一點,若且,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com