6.執(zhí)行如圖的程序框圖,若輸出的值為$\frac{35}{4}$,則判斷框中可以填( 。
A.i$>\frac{3}{2}$?B.i$≥\frac{3}{2}$?C.i>$\frac{5}{4}$?D.i$≥\frac{5}{4}$?

分析 模擬執(zhí)行程序,依次寫(xiě)出每次循環(huán)得到的i,M,N的值,根據(jù)輸出的值為$\frac{35}{4}$,即可得解判斷框中的條件.

解答 解:模擬執(zhí)行程序,可得
第一次,i=2,M=2,N=4;
第二次,i=2,M=4,N=6;
第三次,i=$\frac{3}{2}$,M=6,N=$\frac{15}{2}$;
第四次,i=$\frac{5}{4}$,M=$\frac{15}{2}$,N=$\frac{35}{4}$;
第五次,i=$\frac{7}{6}$,此時(shí)必須終止循環(huán),觀察可知判斷框中可以填i$≥\frac{5}{4}$?,
故選:D.

點(diǎn)評(píng) 本題主要考查了算法與程序框圖,意在考查學(xué)生的分析能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知P-ABC為正三棱錐,底面邊長(zhǎng)為2,設(shè)D為PB的中點(diǎn),且AD⊥PC,如圖所示
(1)求證:PC⊥平面PAB;
(2)求二面角D-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC的平分線,交AD于F,已知DF=$\sqrt{2}$,AF=$\sqrt{5}$,EC=2$\sqrt{5}$,則AE=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若全集為實(shí)數(shù)R,集合A={x||2x-1|>3},B={x|y=$\frac{4}{\sqrt{x-1}}$},則(∁RA)∩B=( 。
A.{x|-1≤x≤2}B.{x|1<x≤2}C.{x|1≤x≤2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z滿足z(2+i)=3-5i,則復(fù)數(shù)z的實(shí)部為(  )
A.-$\frac{13i}{5}$B.-$\frac{13}{5}$C.$\frac{1}{5}$D.$\frac{13}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知△ABC中,∠BAC,∠ABC,∠BCA所對(duì)的邊分別為a,b,c,AD⊥BC且AD交BC于點(diǎn)D,AD=a,若$\frac{si{n}^{2}∠ABC+si{n}^{2}∠BCA+si{n}^{2}∠BAC}{sin∠ABC•sin∠BCA}$≤m恒成立,則實(shí)數(shù)m的取值范圍為[2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x-2|-|x+1|.
(1)解不等式:f(x)≥2;
(2)若?x0∈R,使得f(x0)≥m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一個(gè)半徑為1的扇形OAB,其弦AB的長(zhǎng)為d,面積為t,則函數(shù)d=f (t ) 的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.圓心在拋物線y2=2x(y≥0)上,經(jīng)過(guò)點(diǎn)(2,0)且面積最小的圓為⊙C,直線y=kx+2與⊙C相交于A,B兩點(diǎn),當(dāng)弦長(zhǎng)|AB|取得最小值時(shí)k=$\frac{2+\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案