【題目】已知函數(shù)

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點個數(shù),并說明理由;

(3)當時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實數(shù)的取值范圍.

【答案】(1) .

(2) 函數(shù)與函數(shù)的圖象有2個公共點;說明見解析.

(3).

【解析】分析:(1)由題意可得,解出

(2)要求方程解的個數(shù),即求方程在定義域上的解的個數(shù),令,利用零點存在定理判斷即可;

(3)要使時,函數(shù)的圖象始終在函數(shù)的圖象的上方,

必須使上恒成立,令,則,上式整理得恒成立,分類討論即可.

詳解:(1)因為為奇函數(shù),所以對于定義域內任意,都有,

,

顯然,由于奇函數(shù)定義域關于原點對稱,所以必有.

上面等式左右兩邊同時乘以

,化簡得

,.

上式對定義域內任意恒成立,所以必有,

解得.

(2)(1),所以,即,

所以函數(shù)定義域.

由題意,要求方程解的個數(shù),即求方程

在定義域上的解的個數(shù).

,顯然在區(qū)間均單調遞增,

.

所以函數(shù)在區(qū)間上各有一個零點,

即方程在定義域上有2個解,

所以函數(shù)與函數(shù)的圖象有2個公共點.

(附注:函數(shù)在定義域上的大致圖象如圖所示)

(3)要使時,函數(shù)的圖象始終在函數(shù)的圖象的上方,

必須使上恒成立,

,則,上式整理得恒成立.

方法一:令.

,即時,上單調遞增,

所以,恒成立;

,即時,上單調遞減,

只需,解得矛盾.

,即時,

上單調遞減,在上單調遞增,

所以由,解得,

,所以

綜合①②③的取值范圍是.

方法二:因為恒成立. ,

,所以得恒成立

,則,且,

所以,

由基本不等式可知(當且僅當時,等號成立.)

,

所以,

所以的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 為正三角形,平面平面 , , .

(Ⅰ)求證:平面平面;

(Ⅱ)求三棱錐的體積;

(Ⅲ)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質量與尺寸之間滿足關系式為大于的常數(shù)),現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

對數(shù)據(jù)作了處理,相關統(tǒng)計量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求關于的回歸方程(提示:由已知, 的線性關系);

(2)按照某項指標測定,當產(chǎn)品質量與尺寸的比在區(qū)間內時為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高三畢業(yè)生報考體育專業(yè)學生的體重(單位:千克)情況,將他們的體重數(shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報考體育專業(yè)學生的總人數(shù);

(Ⅱ)已知A, 是該校報考體育專業(yè)的兩名學生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報考體育專業(yè)的學生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學生共6名,然后再從這6人中抽取體重小于55千克學生1人,體重不小于70千克的學生2人組成3人訓練組,求A不在訓練組且在訓練組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,點邊上,,

(1)求的值;

(2)若的面積是,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)如圖所示,已知以點為圓心的圓與直線相切.過點的動直線與圓相交于,兩點,的中點,直線相交于點.

1)求圓的方程;

2)當時,求直線的方程.

3是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點,上任意一點,,上任意兩點,且的長為定值,則下面的四個值中不為定值的是( )

A. 到平面的距離B. 三棱錐的體積

C. 直線與平面所成的角D. 二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示已知AB、C是一條直路上的三點,ABBC各等于1 km,從三點分別遙望塔M,A處看見塔在北偏東45°方向,B處看塔在正東方向在點C處看見塔在南偏東60°方向,求塔到直路ABC的最短距離.

查看答案和解析>>

同步練習冊答案