分析 由題意可得,$\left\{\begin{array}{l}{f(0)=b>0}\\{f(1)=1+a+b>0}\\{0<-\frac{a}{2}<1}\\{f(-\frac{a}{2})=\frac{{a}^{2}}{4}-\frac{{a}^{2}}{2}+b<0}\end{array}\right.$,從而作出平面區(qū)域,而min{f(0),f(1)}=$\left\{\begin{array}{l}{b,-1≤a<0}\\{1+a+b,-2<a<-1}\end{array}\right.$,從而分類討論求取值范圍即可
解答 解:∵函數(shù)f(x)=x2+ax+b在(0,1)上有兩個(gè)零點(diǎn),
∴$\left\{\begin{array}{l}{f(0)=b>0}\\{f(1)=1+a+b>0}\\{0<-\frac{a}{2}<1}\\{f(-\frac{a}{2})=\frac{{a}^{2}}{4}-\frac{{a}^{2}}{2}+b<0}\end{array}\right.$,
由題意作平面區(qū)域如下,
,
∵f(0)=b,f(1)=1+a+b,
∴min{f(0),f(1)}=$\left\{\begin{array}{l}{b,-1≤a<0}\\{1+a+b,-2<a<-1}\end{array}\right.$,
結(jié)合圖象可知,D(-1,$\frac{1}{4}$),
當(dāng)-1≤a<0時(shí),0<b<$\frac{1}{4}$,
當(dāng)-2<a<-1時(shí),0<1+a+b<$\frac{1}{4}$,
綜上所述,min{f(0),f(1)}的取值范圍是(0,$\frac{1}{4}$);
故答案為:(0,$\frac{1}{4}$).
點(diǎn)評 本題考查了線性規(guī)劃的變形應(yīng)用及數(shù)形結(jié)合、分類討論的思想應(yīng)用,同時(shí)考查了函數(shù)的零點(diǎn)與函數(shù)的圖象的關(guān)系應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\sqrt{3},1)∪(\sqrt{3},+∞)$ | B. | $(-∞,-1)∪(\sqrt{3},+∞)$ | C. | $(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$ | D. | $(-\sqrt{3},-1)∪(1,\sqrt{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com