2.已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R且a<0).若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是-3.
(Ⅰ)求a,b的值;     
(Ⅱ)求函數(shù)f(x)在點(1,f(1))處的切線方程.

分析 (1)求出導數(shù),求出切線的斜率,解方程,即可得到a,再由圖象過原點,可得b=0;
(Ⅱ) 由(Ⅰ)知f(x)=x3+4x2-3xf′(x)=3x2+8x-3,求出切線斜率、切點坐標,即可求函數(shù)f(x)在點(1,f(1))處的切線方程.

解答 解:(Ⅰ)∵f(x)=x3+(1-a)x2-a(a+2)x+b,
∴f′(x)=3x2+2(1-a)x-a(a+2)…(2分)            
依題意得$\left\{\begin{array}{l}{f(0)=b=0}\\{f′(0)=-a(a+2)=-3}\end{array}\right.$…(4分)
解得,a=-3或a=1(舍去) …(5分)
(Ⅱ) 由(Ⅰ)知f(x)=x3+4x2-3xf′(x)=3x2+8x-3…(6分)
所以k=f′(1)=8…(7分)
又因為當x=1時f(1)=1+4-3=2…(8分)
所以函數(shù)f(x)在點(1,f(1))處的切線方程為y-2=8(x-1)
即y=8x-6…(10分)

點評 本題考查導數(shù)的運用:求切線方程,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)=sin(\frac{7π}{6}-2x)+2{cos^2}x-1$
(Ⅰ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{2},\frac{π}{12}]$上的最大值和最小值;
(Ⅱ)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點$(A,\frac{1}{2})$,b、a、c成等差數(shù)列,且△ABC的面積為$\frac{{9\sqrt{3}}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.直線4x+y=4,mx+y=0和2x-3my=4不能構(gòu)成三角形,則m的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知$|\overrightarrow b|=5$,且$\overrightarrow a•\overrightarrow b=12$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$\frac{12}{5}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列命題中真命題的個數(shù)為( 。
①面積相等的三角形是全等三角形;
②若xy=0,則|x|+|y|=0;
③若a>b,則a+c>b+c;
④矩形的對角線互相垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}=$\left\{\begin{array}{l}m({m≤n})\\ n({m>n})\end{array}$,則min{h(0),h(1)}的取值范圍為(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.給出以下命題:
①若f′(x0)=0,則f(x0)為f(x)的極值.
②若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
③△ABC中,若sin2A+sin2B<sin2C,則△ABC是鈍角三角形;
④若函數(shù)f(x)=cos2x+asinx在區(qū)間$(\frac{π}{4},\frac{π}{2})$是減函數(shù),則a∈$({-∞,2\sqrt{2}}]$
⑤設△ABC的三邊長分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=$\frac{2S}{a+b+c}$;類比這個結(jié)論可知:四面體S-ABC的四個面的面積分別為S1、S2、S3、S4,內(nèi)切球的半徑為R,四面體P-ABC的體積為V,則R=$\frac{3V}{S_1+S_2+S_3+S_4}$
其中正確命題的序號為③④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.到直線2x+y+1=0的距離為$\frac{{\sqrt{5}}}{5}$的點的集合為( 。
A.直線2x+y-2=0B.直線2x+y=0
C.直線2x+y=0或2x+y-2=0D.直線2x+y=0或直線2x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.用反證法證明命題“a、b∈R,若a2+b2=0,則a=b=0”,其假設正確的是 ( 。
A.a、b至少有一個不為0B.a、b至少有一個為0
C.a、b全不為0D.a、b中只有一個為0

查看答案和解析>>

同步練習冊答案