分析 利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.
解答 解:設(shè)遞增的等比數(shù)列{an}的公比為q,∵a2=3,a4-a3=18,
∴a1q=3,${a}_{1}{q}^{2}$(q-1)=18,解得a1=1,q=3;或a1=-$\frac{3}{2}$,q=-2(舍去).
則a5=34=81;
{an}的前5項(xiàng)的和S5=$\frac{{3}^{5}-1}{3-1}$=121.
故答案為:81,121.
點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其求和公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {m|m>$\frac{9}{4}$} | B. | {m|m≥$\frac{9}{4}$} | C. | {m|m<$\frac{9}{4}$} | D. | {m|m≤$\frac{9}{4}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | $\frac{24}{25}$ | C. | -$\frac{24}{25}$ | D. | -$\frac{12}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y-1)2=1 | B. | (x+1)2+(y+1)2=1 | C. | (x+$\frac{3}{5}$)2+(y+$\frac{6}{5}$)2=$\frac{4}{5}$ | D. | (x-$\frac{3}{5}$)2+(y-$\frac{6}{5}$)2=$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com