5.如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,構(gòu)成四棱錐A1-BCDE,若M為線段A1C的中點,在翻轉(zhuǎn)過程中有如下4個命題:
①MB∥平面A1DE;
②存在某個位置,使DE⊥A1C;
③存在某個位置,使A1D⊥CE;
④點A1在半徑為$\sqrt{2}$的圓面上運動,
其中正確的命題個數(shù)是( 。
A.1個B.2個C.3個D.4個

分析 對4個命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:取CD中點F,連接MF,BF,則MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故①正確
∵A1C在平面ABCD中的射影為AC,AC與DE不垂直,
∴存在某個位置,使DE⊥A1C不正確,故②不正確.
由CE⊥DE,可得平面A1DE⊥平面ABCD時,A1D⊥CE,故②正確.
∵DE的中點O是定點,OA1=$\sqrt{2}$,∴A1是在以O(shè)為圓心,$\sqrt{2}$為半徑的圓上,故④正確,
故選:C.

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了線面、面面平行與垂直的判定和性質(zhì)定理,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.
(Ⅰ)求證:平面DPC⊥平面BPC;
(Ⅱ)求二面角C-PD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)滿足$f({x-1})=\frac{1}{f(x)-1}$,當(dāng)x∈[-1,0]時,f(x)=x,若在區(qū)間[-1,1]上,g(x)=f(x)-mx+m有兩個零點,則實數(shù)m的取值范圍為(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD 都是邊長為2的等邊三角形,E 是BC的中點.
(Ⅰ)證明:平面AE∥平面 PCD;
(Ⅱ)求PAB與平面 PCD 所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-c)2+y2=4a2截得弦長為2b(其中c為雙曲線的半焦距),則該雙曲線的離心率為( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{{3(1-{2^x})}}{{{2^x}+1}},(-1≤x≤1)}\\{-\frac{1}{4}({x^3}+3x),(x<-1或x>1)}\end{array}}\right.$對任意的m∈[-3,2],總有f(mx-1)+f(x)>0恒成立,則x的取值范圍是( 。
A.$({-\frac{1}{2},\frac{1}{3}})$B.(-1,2)C.$({-\frac{4}{3},-\frac{1}{2}})$D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線C的漸近線方程為y=±$\frac{{2\sqrt{3}}}{3}x$,一個焦點為F(0,-$\sqrt{7}$),點A($\sqrt{2}$,0),點P為雙曲線第一象限內(nèi)的點,則當(dāng)P點位置變化時,△PAF周長的最小值為( 。
A.8B.10C.$4+3\sqrt{7}$D.$3+3\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出的s的值是( 。
A.7B.6C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x-mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對?x∈R恒成立,求實數(shù)m的取值范圍;
(3)設(shè)x1,x2(x1≠x2)是函數(shù)f(x)的兩個零點,求證x1+x2>2.

查看答案和解析>>

同步練習(xí)冊答案