20.已知集合M={x|0<x≤6},從集合M中任取一個(gè)數(shù)x,使得函數(shù)y=log2x的值大于1的概率為$\frac{2}{3}$.

分析 根據(jù)對(duì)數(shù)的性質(zhì)求出log2x>1的范圍,結(jié)合幾何概型的概率公式進(jìn)行求解即可.

解答 解:依題意,結(jié)合y=log2x>1得2<x≤6,
則對(duì)應(yīng)的概率P=$\frac{6-2}{6-0}=\frac{4}{6}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,根據(jù)對(duì)數(shù)的性質(zhì)求出等價(jià)條件是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.作下列函數(shù)的圖象.
(1)y=2x-1,x∈N;
(2)y=$\left\{\begin{array}{l}{2x,0≤x≤4}\\{8,4<x≤8}\\{24-2x,8<x≤12}\end{array}\right.$
(3)y=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$
(4)y=|x2+2x-8|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在xOy平面上,點(diǎn)A,B在單位圓上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若點(diǎn)B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知(1+x+ax3)(x+$\frac{1}{x}$)5展開(kāi)式的各項(xiàng)系數(shù)和為96,則該展開(kāi)式的常數(shù)項(xiàng)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若2弧度的圓心角所夾的扇形的面積是4cm2,則該圓心角所對(duì)的弧長(zhǎng)為( 。
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線x+3y-7=0與圓x2+y2+2x-2y-3=0的交點(diǎn)A,B,則過(guò)A,B兩點(diǎn)且過(guò)原點(diǎn)的圓的方程x2+y2+$\frac{11}{7}$x-$\frac{23}{7}$y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=$\frac{x-2}{e^x}$在x=x0處取得極值,則x0=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)G是一個(gè)非空集合,*是定義在G上的一個(gè)運(yùn)算.如果同時(shí)滿足下述四個(gè)條件:
(。⿲(duì)于?a,b∈G,都有a*b∈G;
(ⅱ)對(duì)于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(iii)對(duì)于?a∈G,?e∈G,使得a*e=e*a=a;
(iv)對(duì)于?a∈G,?a'∈G,使得a*a′=a′*a=e(注:“e”同(iii)中的“e”).
則稱G關(guān)于運(yùn)算*構(gòu)成一個(gè)群.現(xiàn)給出下列集合和運(yùn)算:
①G是整數(shù)集合,*為加法;②G是奇數(shù)集合,*為乘法;③G是平面向量集合,*為數(shù)量積運(yùn)算;④G是非零復(fù)數(shù)集合,*為乘法.其中G關(guān)于運(yùn)算*構(gòu)成群的序號(hào)是①④(將你認(rèn)為正確的序號(hào)都寫(xiě)上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知|${\overrightarrow a}$|=$\sqrt{5}$,$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,則$\overrightarrow a$的坐標(biāo)為( 。
A.(-2,-1)或(2,1)B.(-6,3)C.(1,2)D.(2,-1)或(-2,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案