分析 利用正弦定理及雙曲線的定義,可得a,c的不等式,即可求出雙曲線的離心率的取值范圍.
解答 解:不妨設(shè)P在雙曲線右支上運(yùn)動(dòng),
由正弦定理可得c•PF2=a•PF1,且PF1-PF2=2a,
聯(lián)立可得PF2=$\frac{2{a}^{2}}{c-a}$>0,即得c-a>0,即e>1,…①
又PF2>c-a,
∴PF2=$\frac{2{a}^{2}}{c-a}$≥c-a,化簡可得c2-2ac-a2≤0,即e2-2e-10,得1-$\sqrt{2}$<e≤1+$\sqrt{2}$…②
由①②可得e∈$(1\;,\;1+\sqrt{2}]$.
故答案為:$(1\;,\;1+\sqrt{2}]$.
點(diǎn)評(píng) 本題考查雙曲線的離心率的取值范圍,考查正弦定理及雙曲線的定義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>4 | B. | m<4 | C. | m<4且$m≠\frac{9}{4}$ | D. | m<4且$m≠-\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
f(x) | 123.5 | 21.5 | -7.82 | 11.57 | -53.7 | -126.7 | -129.6 |
A. | 5個(gè) | B. | 4個(gè) | C. | 3個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價(jià) | |
黃瓜 | 4噸 | 1.2萬元 | 0.55萬元 |
冬瓜 | 6噸 | 0.9萬元 | 0.3萬元 |
A. | 50,0 | B. | 30,20 | C. | 20,30 | D. | 0,50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-3) | B. | (-1,0) | C. | (4,5) | D. | (-4,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com