分析 由題意畫(huà)出圖形,結(jié)合原點(diǎn)O到直線l:y=x+1的距離為$\frac{\sqrt{2}}{2}$,數(shù)形結(jié)合可得滿足條件的r的取值范圍.
解答 解:如圖,
∵原點(diǎn)O到直線l:y=x+1的距離d=$\frac{|1|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴以O(shè)為圓心,以$1-\frac{\sqrt{2}}{2}$為半徑的圓上僅有一點(diǎn)A到直線l的距離為1,
當(dāng)圓的半徑r$>1-\frac{\sqrt{2}}{2}$時(shí),開(kāi)始有兩點(diǎn)滿足到直線l的距離為1,
到半徑增大到為1+$\frac{\sqrt{2}}{2}$時(shí),除直線l的右下方有兩點(diǎn)滿足條件外,左上方的B點(diǎn)也滿足到直線l的距離為1.
∴r的取值范圍是1$-\frac{\sqrt{2}}{2}$<r<1+$\frac{\sqrt{2}}{2}$.
故答案為:1$-\frac{\sqrt{2}}{2}$<r<1+$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)x=e時(shí),f(x)取得最小值 | B. | f(x)最大值為1 | ||
C. | 不等式f(x)<0的解集是(1,e) | D. | 當(dāng)$\frac{1}{e}$<x<1時(shí),f(x)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x | B. | y=3x2 | C. | y=x-1 | D. | y=|x|(x∈[0,1]) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | a>b>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com