5.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求證:cos2A+cos2B+cos2C=$\frac{3}{2}$.

分析 根據(jù)題意,利用同角的三角函數(shù)關(guān)系和兩角和與差的公式,求出cos(B-C)=-$\frac{1}{2}$,
再求出cos2A+cos2B+cos2C=0,利用降冪公式即可求出cos2A+cos2B+cos2C的值.

解答 證明:由sinA=-(sinB+sinC),cosA=-(cosB+cosC),
sin2A+cos2A=1,
∴(sinB+sinC)2+(cosB+cosC)2=1,
sin2B+2sinBsinC+sin2C+cos2B+2cosBcosC+cos2C=1,
2+2cos(B-C)=1
即cos(B-C)=-$\frac{1}{2}$,
∴cos2A+cos2B+cos2C=2cos2A-1+cos2B+cos2C,
=2cos2B+2cos2C-1+4cosBcosC+cos2B+cos2C,
=2cos2B+2cos2C+4cosBcosC+1,
=4cos(B+C)cos(B-C)+2[cos(B+C)+cos(B-C)]+1,
=-2cos(B+C)+2cos(B+C)-1+1,
=0;
∴cos2A+cos2B+cos2C=$\frac{1+cos2A}{2}$+$\frac{1+cos2B}{2}$+$\frac{1+cos2C}{2}$
=$\frac{3}{2}$+$\frac{1}{2}$(cos2B+cos2B+cos2C)=$\frac{3}{2}$.

點評 本題考查同角的基本關(guān)系,兩角和差的正余弦公式及二倍角公式,證明過程復雜,需要敏銳的觀察能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知命題p:x2-5x+6≥0;命題q:0<x<4.若p∨q是真命題,¬q是真命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知二次函數(shù)y=ax2+1的圖象為拋物線C,過頂點A(0,1)的直線l與拋物線C相交于另外一點P,點Q為拋物線C上另外一點,且點M(0,m)到直線l的距離為1.
(Ⅰ)若直線l的斜率為k,且|k|∈[$\frac{{\sqrt{3}}}{3}$,$\sqrt{3}}$],求實數(shù)m的取值范圍;
(Ⅱ)當m=$\sqrt{2}$+1時,△APQ的內(nèi)心恰好是點M,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}$=1的兩個焦點,P為橢圓上一點,則|PF1|•|PF2|的最大值是( 。
A.64B.100C.36D.136

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=ex(x-1),則( 。
A.f(x)在x=1處取到極大值B.f(x)在x=1處取到極小值
C.f(x)在x=0處取到極大值D.f(x)在x=0處取到極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x+2-k{x}^{2}}{{x}^{2}}$且f(x)>0的解集為(-1,0)∪(0,2).
(1)求k的值;
(2)如果實數(shù)t同時滿足下列兩個命題;
 ①?x∈($\frac{1}{2}$,1),t-1<f(x)恒成立;
②?x0∈(-5,0),t-1<f(x0)成立,求實數(shù)t的取值范圍;
(3)若關(guān)于x的方程lnf(x)+2lnx=ln(3-ax)僅有一解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在△ABC中,∠BAC的平分線交BC于點D,交△ABC的外接圓于點E,延長AC交△DCE的外接圓于點F,DF=$\sqrt{14}$.
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.sin77°cos47°-sin13°cos43°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“x≠2或y≠3”是“x+y≠5”的(  )
A.充分必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案