13.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}$=1的兩個焦點,P為橢圓上一點,則|PF1|•|PF2|的最大值是( 。
A.64B.100C.36D.136

分析 根據(jù)橢圓的定義,結(jié)合基本不等式,求出|PF1||PF2|的最大值.

解答 解:設(shè)|PF1|=m,|PF2|=n,
根據(jù)橢圓的定義得m+n=20;
m+n=20≥2$\sqrt{mn}$,
∴mn≤($\frac{m+n}{2}$)2=100,
當(dāng)且僅當(dāng)m=n=10時,等號成立;
∴|PF1|PF2|的最大值為100.
故答案選:B.

點評 本題考查了橢圓的定義與幾何性質(zhì)的應(yīng)用問題,考查基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=x3-3x的遞減區(qū)間是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosx=-$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,π).
(1)求sinx的值;
(2)求tan(2x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋物線y2=8x與雙曲線上一點$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的有共同的焦點F,兩曲線在第一象限的交點為P(x0,y0),且P到焦點F的距離為5,則雙曲線的離心率e=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.當(dāng)k為何值時,方程組$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=6}\\{x-y=k}\end{array}\right.$,有唯一解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時 f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|log5x|的圖象的交點共有( 。
A.5個B.6個C.8個D.10個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求證:cos2A+cos2B+cos2C=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)(x∈R,且x>0),對于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時,f(x)>0恒成立.
(1)求f(1);
(2)若x∈[1,+∞)時,不等式f($\frac{{{x^2}+2x+a}}{x}$)>f(1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①函數(shù)f(x)=$\frac{3x-1}{x}$不可能是k型函數(shù);
②若函數(shù)y=-$\frac{1}{2}$x2+x是3型函數(shù),則m=-4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為$\frac{4}{9}$;
④若函數(shù)y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函數(shù),則n-m的最大值為$\frac{2\sqrt{3}}{3}$.
下列選項正確的是( 。
A.①③B.②③C.①④D.②④

查看答案和解析>>

同步練習(xí)冊答案