有一段演繹推理是這樣的:“指數(shù)函數(shù)是增函數(shù);是指數(shù)函數(shù);是增函數(shù)”,結(jié)論顯然是錯(cuò)誤的,原因是(   )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤
A

試題分析:當(dāng)時(shí),指數(shù)函數(shù)是增函數(shù);當(dāng)時(shí),指數(shù)函數(shù)是減函數(shù),故說(shuō)“指數(shù)函數(shù)是增函數(shù)”是錯(cuò)誤的。故選A。
點(diǎn)評(píng):演繹推理包括三部分:大前提、小前提和結(jié)論,大前提是原理,必須保證大前提正確,結(jié)論才會(huì)正確。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:
;

已經(jīng)證明:若是質(zhì)數(shù),則是完全數(shù),.請(qǐng)寫(xiě)出一個(gè)四位完全數(shù)       ;又,所以的所有正約數(shù)之和可表示為;
,所以的所有正約數(shù)之和可表示為;
按此規(guī)律,的所有正約數(shù)之和可表示為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

把正奇數(shù)數(shù)列按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)一個(gè)數(shù),第五個(gè)括號(hào)兩個(gè)數(shù),第六個(gè)括號(hào)三個(gè)數(shù), .依次劃分為,,,,,,, .則第個(gè)括號(hào)內(nèi)各數(shù)之和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是                          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列推理是歸納推理的是(   )
A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,得P的軌跡為橢圓
B.由a1=a,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式
C.由圓x2+y2=r2的面積πr2,猜想出橢圓的面積S=πab
D.科學(xué)家利用魚(yú)的沉浮原理制造潛艇

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),用反證法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將正偶數(shù)按下表排列則2012所在的位置是
 
第1列
第2列
第3列
第4列
第5列
第一行
 
2
4
6
8
第二行
16
14
12
10
 
第三行
 
18
20
22
24
第四行
32
30
28
26
 
……
 
……
 
……
 
A.第252行第3列        
B.第252行第4列
C.第251行第3列        
D.第251行第4列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

無(wú)窮數(shù)列 的首項(xiàng)是,隨后兩項(xiàng)都是,接下來(lái)項(xiàng)都是,再接下來(lái)項(xiàng)都是, ,以此類推.記該數(shù)列為,若,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō):“是乙或丙獲獎(jiǎng)”,乙說(shuō):“甲、丙都未獲獎(jiǎng)”,丙說(shuō):“我獲獎(jiǎng)了”,丁說(shuō):“是乙獲獎(jiǎng)了”,四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是 (   )
A.甲B.乙C.丙D.丁

查看答案和解析>>

同步練習(xí)冊(cè)答案