已知圓經(jīng)過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

(1);(2)

解析試題分析:(1)本題求圓的方程,已知圓上兩點即圓心的縱坐標,所以需要求出圓的半徑和圓心的橫坐標兩個值即可確定圓的方程,通過列解方程即可求出相應(yīng)的量,該題的半徑的長剛好就是圓心的橫坐標的值,這個條件要用上.
(2)該小題是直線與圓的位置關(guān)系問題,特別要先判斷直線的斜率不存在的時候的情況,通過畫圖可知符合條件,其次是斜率存在時,通過重點三角形(弦心距,半弦長,半徑)的關(guān)系可以求出弦心距的長,從而再用圓心到直線的距離公式求出直線的斜率,又過已知點即可寫出直線方程.
試題解析:(1)設(shè)圓的圓心坐標為
依題意,有,
,解得,所以圓的方程為.
(2)依題意,圓的圓心到直線的距離為
所以直線符合題意.
另,設(shè)直線方程為,即,
,
解得
所以直線的方程為,即.
綜上,直線的方程為.
考點:1.直線與圓的關(guān)系.2.圓的標準方程.3.分類歸納思想.4.運算能力的鍛煉.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

直線l過點(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點,如果AB=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的方程為,直線的方程為,點在直線上,過點作圓的切線,切點為.
(1)若,試求點的坐標;
(2)若點的坐標為,過作直線與圓交于兩點,當時,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓
(Ⅰ)若過定點()的直線與圓相切,求直線的方程;
(Ⅱ)若過定點()且傾斜角為的直線與圓相交于兩點,求線段的中點的坐標;
(Ⅲ) 問是否存在斜率為的直線,使被圓截得的弦為,且以為直徑的圓經(jīng)過原點?若存在,請寫出求直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓心為點的圓與直線相切.

(1)求圓的標準方程;
(2)對于圓上的任一點,是否存在定點 (不同于原點)使得恒為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:以點C(t,)(t∈R,t≠0)為圓心的圓與軸交于點O,A,與y軸交于點O,B,其中O為原點
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=–2x+4與圓C交于點M,N,若OM=ON,求圓C的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓,點.

(1)求圓心在直線上,經(jīng)過點,且與圓相外切的圓的方程;
(2)若過點的直線與圓交于兩點,且圓弧恰為圓周長的,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點,,直線(為常數(shù)).
(1)若點、到直線的距離相等,求實數(shù)的值;
(2)對于上任意一點,恒為銳角,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案