分析 利用配方法求f(x)的值域;求出當(dāng)x<0時,f(x)=-f(-x)=-(-x2-2x-3)=x2+2x+3,利用f(m)=6,求m的值.
解答 解:當(dāng)x>0時,f(x)=-x2+2x-3=-(x-1)2-2,
∵x∈[2,4],∴函數(shù)單調(diào)遞減,∴f(x)的值域是[-11,-3];
x>0時,f(x)=-x2+2x-3=6,可得x2-2x+9=0,無解;
當(dāng)x<0時,f(x)=-f(-x)=-(-x2-2x-3)=x2+2x+3=6,∴x=-3或x=1(舍去),
∴m=-3.
點評 本題考查了借助函數(shù)的奇偶性求解函數(shù)的解析式,考查函數(shù)的值域,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AB+BC有最大值 | B. | AB+BC有最小值 | C. | AE+DC有最大值 | D. | AE+DC有最小值 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com