13.已知a,b>0且a≠1,b≠1,logab>1,某班的幾位學生根據(jù)以上條件,得出了以下4個結論:
①b>1 且 b>a;  ②a<1 且 a<b;③b<1 且 b<a;④a<1 且b<1.
其中不可能成立的結論共有(  )個.
A.1B.2C.3D.4

分析 根據(jù)對數(shù)函數(shù)的性質,通過討論a的范圍判斷即可.

解答 解:∵a,b>0且a≠1,b≠1,logab>1=logaa,
0<a<1時,b<a,
a>1時,b>a,
故②錯誤,
故選:A.

點評 本題考查了對數(shù)函數(shù)的性質,考查分類討論思想,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x+$\frac{a}{x}$+b,其中a,b是常數(shù)且a>0.
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,$\sqrt{a}$]上是單調(diào)遞減函數(shù);
(2)已知函數(shù)f(x)在區(qū)間[$\sqrt{a}$,+∞)上是單調(diào)遞增函數(shù),且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.定義在R上的奇函數(shù)f(x),當x>0時,f(x)=-x2+2x-3.
當x∈[2,4]時,求f(x)的值域;
當f(m)=6時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x+1)=x2+2x,則f(x-1)=x2-2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列選項正確的是(  )
A.loga(x+y)=logax+logayB.loga$\frac{x}{y}$=$\frac{lo{g}_{a}x}{lo{g}_{a}y}$
C.(logax)2=2logaxD.$\frac{lo{g}_{a}x}{n}$=loga$\root{n}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知二次函數(shù)f(x)=2x2-4x.
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)用描點法畫出它的圖象;
(3)求出函數(shù)的最值,并分析函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某工廠生產(chǎn)甲、乙、丙3類產(chǎn)品共600件.已知甲、乙、丙3類產(chǎn)品數(shù)量之比為1:2:3.現(xiàn)要用分層抽樣的方法從中抽取120件進行質量檢測,則甲類產(chǎn)品抽取的件數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設常數(shù)a>0,若9x+$\frac{a^2}{4x}$≥a2-4對一切正實數(shù)x成立,則a的取值范圍是( 。
A.[-1,4]B.[-4,1]C.(0,1]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=ln(2+x)+ln(2-x),則f(x)是( 。
A.奇函數(shù),且在(0,2)上是增函數(shù)B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)D.偶函數(shù),且在(0,2)上是減函數(shù)

查看答案和解析>>

同步練習冊答案