精英家教網 > 高中數學 > 題目詳情

四個變量,,隨變量變化的數據如下表:


0
5
10
15
20
25

5
130
505
1130
2005
3130

5
94.478
1785.2
33733
6.37
1.2

5
30
55
80
105
130

5
2.3107
1.4295
1.11407
1.0461
1.0151
關于呈指數型函數變化的變量是(  )
A.  B. C. D.

B

解析試題分析:根據表格中的數據可知,隨著x的變化,函數值變化比較快,就是指數型函數的變量,那么可知的變化是符合變化規(guī)律的,故選B
考點:指數型函數
點評:解決的關鍵是理解指數函數爆炸式的增長,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:單選題

工人月工資y(元)與勞動生產率x(千元)變化的回歸方程,下列判斷正確的是  (     ) 
①勞動生產率為1千元時,工資約為130元 
②勞動生產率提高1千元時,月工資約提高80元 
③勞動生產率提高1千元時,月工資約提高130元 
④當月工資為210元時,勞動生產率約為2千元 

A.① ②  B.① ② ④  C.② ④  D.① ② ③ ④

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

甲、乙兩人在次測評中的成績由右邊莖葉圖表示(均為整數),其中有一個數字無法看清,現用字母代替,則甲的平均成績超過乙的平均成績的概率為(    ).

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

兩個變量的回歸模型中,分別選擇了4個不同模型,它們的相關指數如下 ,其中擬合效果最好的模型是(     )

A.模型1的相關指數為0.98B.模型2的相關指數為0.80
C.模型3的相關指數為0.50D.模型4的相關指數為0.25

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

如圖所示,圖中有5組數據,去掉   組數據后(填字母代號),剩下的4 組數據的線性相關性最強(   )

A. B. C. D. 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設某大學的女生體重(單位:kg)與身高(單位:cm)具有線性相關關系,根據一組樣本數據()(=1,2,…,n),用最小二乘法建立的回歸方程為=0.85—85.71,則下列結論其中正確的個數是(   )
① y與x具有負的線性相關關系
② 回歸直線過樣本點的中心(
③ 若該大學某女生身高增加1cm,則其體重約增加0.85kg
④ 若該大學某女生身高為170cm,則可斷定其體重必為58.79kg

A.0 B.1 C. 2 D. 3 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

下列對一組數據的分析,不正確的說法是

A.數據極差越小,樣本數據分布越集中、穩(wěn)定
B.數據平均數越小,樣本數據分布越集中、穩(wěn)定
C.數據標準差越小,樣本數據分布越集中、穩(wěn)定
D.數據方差越小,樣本數據分布越集中、穩(wěn)定

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

某學生四次模擬考試時,其英語作文的扣分情況如下表:

考試次數
 
1
 
2
 
3
 
4
 
所減分數
 
4.5
 
4
 
3
 
2.5
 
顯然所扣分數與模擬考試次數之間有較好的線性相關關系,則其線性回歸方程為(   )
A. B.C.  D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

一個容量為20的樣本數據分組后,組距與頻數如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4,(60,70),2.則樣本在區(qū)間(-∞,50)上的頻率是(   )

A.0.20   B.0.25 C.0.50   D.0.70

查看答案和解析>>

同步練習冊答案