已知函數(shù)f(x)=sin2x+
3
sinxcosx+
1
2

(1)求f(x)最小正周期,函數(shù)取得最小值,最大值的變量x集合.
(2)求函數(shù)單調(diào)區(qū)間.
考點:三角函數(shù)的周期性及其求法,三角函數(shù)的最值
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)由二倍角公式化簡解析式可得f(x)=sin(2x-
π
3
+
1
2
,根據(jù)正弦函數(shù)的性質(zhì)即可求f(x)最小正周期,函數(shù)取得最小值,最大值的變量x集合.
(2)由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈Z可解得函數(shù)單調(diào)區(qū)間.
解答: 解:(1)∵f(x)=sin2x+
3
sinxcosx+
1
2
=
1-cos2x
2
+
3
2
sin2x=sin(2x-
π
3
+
1
2

∴T=
2

∴由2x-
π
3
=2kπ+
π
2
解得:x=kπ+
12
,k∈Z.由2x-
π
3
=2kπ+
2
解得:x=kπ+
11π
12
,k∈Z.
∴可得:當(dāng)x=kπ+
12
,k∈Z時,f(x)max=
3
2
;當(dāng)x=kπ+
11π
12
,k∈Z時,f(x)min=-
1
2

(2)由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈Z可解得:kπ-
π
12
≤x≤kπ+
12
,k∈Z.
故函數(shù)單調(diào)區(qū)間是:[kπ-
π
12
,kπ+
12
],k∈Z.
點評:本題主要考察了三角函數(shù)的周期性及其求法,二倍角公式的應(yīng)用,三角函數(shù)的圖象與性質(zhì),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-cos2x.
(1)將f(x)化成y=Asin(ωx+φ)的形式,并求f(x)的周期;
(2)用“五點法”作出函數(shù)f(x)在一個周期內(nèi)有圖象;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.
x     
 0 
π
2
 π 
2
 2π
f(x)     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上且周期為3的函數(shù),當(dāng) x∈[0,3)時,f(x)=|2x2-4x+1|,則方程 f(x)=
1
2
在[-3,4]解的個數(shù)(  )
A、4B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A.∠B,∠C所對的三邊依次為a,b,c,若S△ABC=
3
4
(a2+c2-b2),則∠B=( 。
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:ax+y+2a=0與l2:x+ay+3=0互相平行,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題,其中正確的個數(shù)(  )
①終邊相同的角的三角函數(shù)值相同;
②同名三角函數(shù)值相同,角不一定相同;
③終邊不相同,它們的同名三角函數(shù)值一定不相同;
④不相等的角,同名三角函數(shù)也不相同.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)由數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的六位數(shù),其中個位數(shù)字小于十位數(shù)字的共有多少個?
(2)某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國西部經(jīng)濟開發(fā)建設(shè),其中甲同學(xué)不到銀川,乙不到西寧,共有多少種不同派遣方案?
(3)將5個不同的小球放入3個不同的盒子中,要求每一個盒子至少有一個小球,共有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上任一點M與x軸的距離和它與點F(0,4)的距離相等,則曲線C( 。
A、關(guān)于x軸對稱
B、關(guān)于y軸對稱
C、在直線y=2的下方
D、關(guān)于原點中心對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且滿足f(x-2)=-ax2+(7a+3)x+a+10.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(x)-bx,若當(dāng)x∈[
1
2
,1]時,g(x)的最大值為
11
2
,求b的值;
(3)若當(dāng)x∈[2,+∞),y=f(x)的圖象恒在函數(shù)y=cx圖象上方,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案