分析 利用特征向量的定義,建立方程,求出A,即可求A2.
解答 解:由條件,$[\begin{array}{l}{1}&{a}\\&{2}\end{array}][\begin{array}{l}{2}\\{3}\end{array}]$=4$[{\begin{array}{l}2\\ 3\end{array}}]$,∴$\left\{\begin{array}{l}{2+2a=8}\\{2b+6=12}\end{array}\right.$,解得a=2,b=3 …(5分)
∴A=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$,∴A2=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$=$[\begin{array}{l}{7}&{6}\\{9}&{10}\end{array}]$.…(10分)
點評 本題考查特征值與特征向量,考查學(xué)生的計算能力,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,1) | C. | (1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y-1)2=1 | B. | (x+1)2+(y+1)2=1 | C. | (x+1)2+(y+1)2=2 | D. | (x-1)2+(y-1)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com