分析 (Ⅰ)n=1時(shí),可求得a1=1;依題意,4Sn=(an+1)2,n≥2時(shí),4Sn-1=(an-1+1)2,二式相減,可得an-an-1=2,從而可求數(shù){an}的通項(xiàng)公式;
(Ⅱ)利用裂項(xiàng)法可求得$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,于是可求數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn.
解答 解:(Ⅰ)n=1時(shí),a1=1--------(1分)
n≥2時(shí),4Sn-1=(an-1+1)2,
又4Sn=(an+1)2,
兩式相減得:(an+an-1)(an-an-1-2)=0,
∵an>0,
∴an-an-1=2,
∴數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,即an=2n-1.--------(6分)
(Ⅱ)$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
Tn=(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.--(12分)
點(diǎn)評 本題考查數(shù)列的求和,考查數(shù)列的遞推式與裂項(xiàng)法求和的應(yīng)用,求得數(shù)列{an}的通項(xiàng)公式an=2n-1是解決問題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | ||
C. | 等腰直角三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | a>b>c | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p:a>b,q:a2>b2 | |
B. | p:a>b,q:2a>2b | |
C. | p:非零向量$\overrightarrow{a}$與$\overrightarrow$夾角為銳角,q:$\overrightarrow{a}•\overrightarrow>0$ | |
D. | p:ax2+bx+c>0,q:$\frac{c}{{x}^{2}}$-$\frac{x}$+a>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com