設(shè)a∈R,則|a|>1是
1
|a|
<1的( 。
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件
分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.
解答:解:根據(jù)倒數(shù)的性質(zhì)可知:
若|a|>1,則0<
1
|a|
<1成立.
1
|a|
<1,則|a|>1成立.
故|a|>1是
1
|a|
<1的充要條件.
故選:C.
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,利用不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)設(shè)a∈R,則“a=1”是“直線l1:ax+2y=0與直線l2:x+(a+1)y+4=0平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,則“a=1”是“函數(shù)y=sinax•cosax的最小正周期為π”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,則a>1是
1
a
<1
的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試浙江卷數(shù)學(xué)理科 題型:013

設(shè)aR,則“a=1”是“直線l1ax+2y-1=0與直線l2x+(a+1)y+4=0平行”的

[  ]

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案