13.若函數(shù)f(x)=log2$\frac{x-a}{x+1}$的反函數(shù)的圖象經(jīng)過點(-2,3),則a=2.

分析 由函數(shù)f(x)=log2$\frac{x-a}{x+1}$的反函數(shù)的圖象經(jīng)過點(-2,3),得函數(shù)f(x)=log2$\frac{x-a}{x+1}$的圖象經(jīng)過點(3,-2),代入計算可得結(jié)論.

解答 解:∵函數(shù)f(x)=log2$\frac{x-a}{x+1}$的反函數(shù)的圖象經(jīng)過點(-2,3),
∴函數(shù)f(x)=log2$\frac{x-a}{x+1}$的圖象經(jīng)過點(3,-2),
∴-2=log2$\frac{3-a}{3+1}$,
∴a=2,
故答案為2.

點評 本題考查了反函數(shù),考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某頻率的分布表如下:
偏差(微米):-20~-15,-15~-10,-10~-5,-5~0,0~5,5~10,10~15,15~20.
頻率分別是:0.035,0.055,0.075,0.120,0.245,0.205,0.130,0.135,則偏差小于10的累計頻率是( 。
A.0.265B.0.205C.0.450D.0.735

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線C:x2=12y的焦點為F,準(zhǔn)線為l,P∈l,Q是線段PF與C的一個交點,若|PF|=3|FQ|.則|FQ|=( 。
A.$\frac{9}{2}$B.$\frac{7}{2}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\frac{{4x-4{x^3}}}{{1+2{x^2}+{x^4}}}$在R上的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)y=f(x)定義在實數(shù)集R上的奇函數(shù),當(dāng)x≥0時,函數(shù)y=f(x)的圖象如圖所示(拋物線的一部分).
(1)在原圖上畫出x<0時函數(shù)y=f(x)的示意圖;
(2)求函數(shù)y=f(x)的解析式(不要求寫出解題過程);
(3)寫出函數(shù)y=|f(x)|的單調(diào)遞增區(qū)間(不要求寫出解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=f(x)是最小正周期為4的偶函數(shù),且在x∈[-2,0]時,f(x)=2x+1,若存在x1,x2,…xn滿足0≤x1<x2<…<xn,且|f(x1)-f(x2)|+|f(x2)-f(x1)|+…+|f(xn-1-f(xn))|=2016,則n+xn的最小值為1513.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α-l-β是二面角,直線a在平面α內(nèi),直線b在平面β內(nèi),且a、b與l均不垂直,則( 。
A.a與b可能垂直,但不可能平行B.a與b可能垂直也可能平行
C.a與b不可能垂直,但可能平行D.a與b不可能垂直,也不可能平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知某公司現(xiàn)有職員120人,中級管理人員30人,高級管理人員10人,要從其中抽取32個人進行身體健康檢查,如果采用分層抽樣的方法,則職員中“中級管理人員“和“高級管理人員”各應(yīng)該抽取的人數(shù)為( 。
A.8,2B.8,3C.6,3D.6,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知P是以F1,F(xiàn)2為焦點的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的一點,若PF1⊥PF2,且|PF1|=2|PF2|,則此橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

同步練習(xí)冊答案