分析 當(dāng)x≠0時,═$\frac{4(\frac{1}{x}-x)}{\frac{1}{{x}^{2}}+{x}^{2}+2}=\frac{4(\frac{1}{x}-x)}{(\frac{1}{x}-x)^{2}+4}$令$\frac{1}{x}-x=t$,t∈R,原函數(shù)化為g(t)=$\frac{4t}{{t}^{2}+4}=\frac{4}{t+\frac{4}{t}}$,可得原函數(shù)的最大值..
解答 解:1)當(dāng)x=0時,f(x)=0;
2)當(dāng)x≠0時,═$\frac{4(\frac{1}{x}-x)}{\frac{1}{{x}^{2}}+{x}^{2}+2}=\frac{4(\frac{1}{x}-x)}{(\frac{1}{x}-x)^{2}+4}$,
令$\frac{1}{x}-x=t$,t∈R,原函數(shù)化為g(t)=$\frac{4t}{{t}^{2}+4}=\frac{4}{t+\frac{4}{t}}$,又因為t+$\frac{4}{t}≥4$或為t+$\frac{4}{t}≤-4$,原函數(shù)的最大值為1.
故答案:1.
點評 本題考查了函數(shù)最值的求解基本方法,涉及到的一系列的變形,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com