點(diǎn)是曲線上的動(dòng)點(diǎn),曲線在點(diǎn)處的切線與軸分別交于兩點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn).給出三個(gè)結(jié)論:①;②△的周長(zhǎng)有最小值;③曲線上存在兩點(diǎn),使得△為等腰直角三角形.其中正確結(jié)論的個(gè)數(shù)是

A.1                B.2                C.3                D.0

 

【答案】

C

【解析】

試題分析:設(shè)動(dòng)點(diǎn)P(m,)(m>0),則y=-,∴f(m)=-,

∴過(guò)動(dòng)點(diǎn)P(m,)的切線方程為:y-=-(x-m).

①分別令y=0,x=0,得A(2m,0),B(0,).

則|PA|=,|PB|=,∴|PA|=|PB|,故①正確;

②由上面可知:△OAB的周長(zhǎng)=2m++2≥2×2+2=4+2,當(dāng)且僅當(dāng)m=,即m=1時(shí)取等號(hào).故△OAB的周長(zhǎng)有最小值4+2,即②正確.

③假設(shè)曲線C上存在兩點(diǎn)M(a,),N(b,),不妨設(shè)0<a<b,∠OMN=90°.

則|ON|=|OM|,

所以

化為,解得,故假設(shè)成立.因此③正確.

故選C。

考點(diǎn):本題主要考查導(dǎo)數(shù)的概念及應(yīng)用;不等式的解法及應(yīng)用。

點(diǎn)評(píng):理解導(dǎo)數(shù)的幾何意義、基本不等式的性質(zhì)、兩點(diǎn)間的距離公式及等腰直角三角形的性質(zhì)是解題的關(guān)鍵.較難。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問(wèn)題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問(wèn)題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過(guò)雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線。

   (3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

平面內(nèi)動(dòng)點(diǎn)到點(diǎn)的距離等于它到直線的距離,記點(diǎn)的軌跡為曲

(Ⅰ)求曲線的方程;

(Ⅱ)若點(diǎn),,上的不同三點(diǎn),且滿足.證明: 不可能為直角三角形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求異面直線PC與AD所成角的大小;
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問(wèn)題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問(wèn)題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案