7.如圖在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則點E到平面BB1C1C的距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 連接A1B,A1C,可證A1B⊥平面AB1C,故而DE∥A1B,于是E為A1C的中點,所以點E到平面BB1C1C的距離為A到平面BB1C1C的距離的$\frac{1}{2}$,即Rt△ABC的斜邊BC邊上的高的一半.

解答 解:連接A1B,A1C,
∵AC⊥AA1,BC⊥AA1,
∴AC⊥平面ABB1A1,又AB1?平面ABB1A1,
∴AC⊥AB1
又AB=AA1,AB⊥AA1,∴四邊形ABB1A1是正方形,
∴A1B⊥AB1,又AB1?平面AB1C,AC?平面AB1C,AB1∩AC=A,
∴A1B⊥平面AB1C,又DE⊥平面AB1C,
∴DE∥A1B,∵D為BC的中點,
∴E為A1C的中點.
∴E到平面BB1C1C的距離等于A到平面BB1C1C的距離的$\frac{1}{2}$.
∵平面ABC⊥平面BB1C1C,
∴A到平面BB1C1C的距離為Rt△ABC的斜邊BC邊上的高.
∵AB=2,AC=$\sqrt{2}$,∴BC=$\sqrt{6}$,
∴Rt△ABC的斜邊BC邊上的高為$\frac{2\sqrt{2}}{\sqrt{6}}$=$\frac{2\sqrt{3}}{3}$.
∴E到平面BB1C1C的距離為$\frac{\sqrt{3}}{3}$.
故選:C.

點評 本題考查了線面垂直的判定,空間距離的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=2x+1,求函數(shù)f(x)的解析式,并畫出它的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在四面體ABCD中,AB=CD,AC=BD,AD=BC,以下判斷錯誤的是( 。
A.該四面體的三組對棱的中點連線兩兩垂直
B.該四面體的外接球球心與內(nèi)切球球心重合
C.該四面體的各面是全等的銳角三角形
D.該四面體中任意三個面兩兩所成二面角的正弦值之和為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于非零向量$\overrightarrow a$,$\overrightarrow b$,下列四個條件中使$\frac{\overrightarrow a}{|\overrightarrow a|}$=$\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充分不必要條件是( 。
A.$\overrightarrow a$=-$\overrightarrow b$B.$\overrightarrow a$∥$\overrightarrow b$C.$\overrightarrow a$=3$\overrightarrow b$D.$\overrightarrow a$∥$\overrightarrow b$且|$\overrightarrow a$|=|$\overrightarrow b$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某產(chǎn)品40件,其中有次品數(shù)3件,現(xiàn)從中任取2件,則其中至少有一件次品的概率是(  )
A.0.146 2B.0.153 8C.0.996 2D.0.853 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知sinα=$\frac{3}{5}$($\frac{π}{2}$<α<π),則tan2α的值為( 。
A.-3B.$-\frac{24}{7}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設函數(shù)f(x)=x2-4x+3,$g(x)=\left\{{\begin{array}{l}{\sqrt{x},x>0}\\{1-{x^2},x≤0}\end{array}}\right.$,則關于x的方程g[f(x)]=1的實數(shù)根個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)$f(x)=\sqrt{3-{3^{|x-1|}}}$的定義域是[02].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若點P(sin2018°,cos2018°),則P在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案