定義函數(shù)fn(x)=(1+x)n-1,x>-2,n∈N。
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數(shù)在區(qū)間[a,0]上的值域?yàn)閇ka,0]?若存在,求出最小的k值及相應(yīng)的區(qū)間[a,0],若不存在,說明理由。
解:(1)


當(dāng)時(shí),
當(dāng)時(shí),
∴g(x)在x=0處取得極小值,同時(shí)g(x)是單峰函數(shù),則g(0)也是最小值

(當(dāng)且僅當(dāng)x=0時(shí)取等號);
(2)


∴當(dāng)時(shí),
當(dāng)時(shí),
當(dāng)
故h(x)的草圖如圖所示
①在時(shí),最小值

②在時(shí),最小值
,
③在時(shí),最小值=
,時(shí)取等號
綜上討論可知k的最小值為,此時(shí)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個(gè)公共點(diǎn),試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時(shí),f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實(shí)數(shù)解的個(gè)數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)fn(x)=(1+x)n-1,x>-2,x∈N*
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數(shù)h(x)=f3(x)-f2(x)在區(qū)間[a,0]上的值域?yàn)閇ka,0]若存在,求出最小的k值及相應(yīng)的區(qū)間[a,0],若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個(gè)公共點(diǎn),試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時(shí),f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實(shí)數(shù)解的個(gè)數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:月考題 題型:解答題

定義函數(shù)fn(x)=(1+x)n﹣1,x>﹣2,x∈N*.
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數(shù)h(x)=f3(x)﹣f2(x)在區(qū)間[a,0]上的值域?yàn)閇ka,0],若存在,求出最小的k值及相應(yīng)的區(qū)間[a,0],若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省常德市芷蘭實(shí)驗(yàn)學(xué)校高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義函數(shù)fn(x)=(1+x)n-1,x>-2,x∈N*
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數(shù)h(x)=f3(x)-f2(x)在區(qū)間[a,0]上的值域?yàn)閇ka,0]若存在,求出最小的k值及相應(yīng)的區(qū)間[a,0],若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案