【題目】某公司為了了解年研發(fā)資金投人量(單位:億元)對年銷售額(單位:億元)的影響.對公司近年的年研發(fā)資金投入量和年銷售額的數(shù)據(jù),進行了對比分析,建立了兩個函數(shù)模型:①,②,其中、、、均為常數(shù),為自然對數(shù)的底數(shù).并得到一些統(tǒng)計量的值.令,,經(jīng)計算得如下數(shù)據(jù):
(1)請從相關(guān)系數(shù)的角度,分析哪一個模型擬合程度更好?
(2)(ⅰ)根據(jù)(1)的選擇及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(ⅱ)若下一年銷售額需達到億元,預(yù)測下一年的研發(fā)資金投入量是多少億元?
附:①相關(guān)系數(shù),
回歸直線中公式分別為:,;
②參考數(shù)據(jù):,,.
【答案】(1)模型的擬合程度更好;(2)(ⅰ);(ⅱ)億元.
【解析】
(1)計算出兩個模型的相關(guān)系數(shù),選擇相關(guān)系數(shù)絕對值較大的模型擬合較好;
(2)(ⅰ)由(1)可知,選擇模型擬合較好,變形得到,即,然后利用表格中的數(shù)據(jù)以及最小二乘法公式求出和的值,即可得出回歸方程;
(ⅱ)在所求回歸方程中,令,結(jié)合題中參考數(shù)據(jù)可求出的值,即可求解.
(1)設(shè)和的相關(guān)系數(shù)為,和的相關(guān)系數(shù)為,由題意,
,
,
則,因此從相關(guān)系數(shù)的角度,模型的擬合程度更好;
(2)(ⅰ)先建立關(guān)于的線性回歸方程,
由,得,即;
由于,,
所以關(guān)于的線性回歸方程為,
所以,則;
(ⅱ)下一年銷售額需達到億元,即,代入,得,
又,所以,所以,
所以預(yù)測下一年的研發(fā)資金投入量約是億元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足且,等比數(shù)列的首項為2,公比為.
(1)若,問等于數(shù)列中的第幾項?
(2)若,數(shù)列和的前項和分別記為和,的最大值為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且
()求數(shù)列的通項公式;
()若數(shù)列滿足,求數(shù)列的通項公式;
()在()的條件下,設(shè),問是否存在實數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校數(shù)學(xué)建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導(dǎo)定律得到熱傳導(dǎo)量滿足關(guān)系式:,其中玻璃的熱傳導(dǎo)系數(shù)焦耳/(厘米度),不流通、干燥空氣的熱傳導(dǎo)系數(shù)焦耳/(厘米度), 為室內(nèi)外溫度差.值越小,保溫效果越好.現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:
型號 | 每層玻璃厚度 (單位:厘米) | 玻璃間夾空氣層厚度 (單位:厘米) |
A型 | ||
B型 | ||
C型 | ||
D型 |
則保溫效果最好的雙層玻璃的型號是________型.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有十二生肖,又叫十二屬相,每一個人的出生年份對應(yīng)了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉祥物各一個,甲、乙、丙三位同學(xué)依次選一個作為禮物,甲同學(xué)喜歡牛、馬和羊,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個吉祥物都喜歡,則讓三位同學(xué)選取的禮物都滿意的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為,點為棱的中點.下列結(jié)論:①線段上存在點,使得平面;②線段上存在點,使得平面;③平面把正方體分成兩部分,較小部分的體積為,其中所有正確的序號是( )
A.①B.③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求證:當(dāng)時,;
(2)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面為正三角形, 側(cè)面是邊長為的正方形,為的中點.
(1)求證平面;
(2)求二面角的余弦值;
(3)試判斷直線與平面的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如表:
指數(shù)值 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖是某市10月1日—20日指數(shù)變化趨勢:
下列敘述正確的是( )
A.該市10月的前半個月的空氣質(zhì)量越來越好
B.這20天中的中度污染及以上的天數(shù)占
C.這20天中指數(shù)值的中位數(shù)略高于100
D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com