分析 先根據(jù)拋物線方程求出焦點坐標和準線方程,運用拋物線的定義和條件可得△AKF為正三角形,F(xiàn)到l的距離為d=2,結合中位線定理,可得|AK|=4,根據(jù)正三角形的面積公式可得到答案.
解答 解:拋物線y2=4x的焦點F(1,0),準線為l:x=-1,
由拋物線的定義可得|AF|=|AK|,
由直角三角形的斜邊上的中線等于斜邊的一半,可得|FK|=|AF|,
即有△AKF為正三角形,
由F到l的距離為d=2,
則|AK|=4,
△AKF的面積是$\frac{\sqrt{3}}{4}$×16=4$\sqrt{3}$.
故答案為:4$\sqrt{3}$.
點評 本題主要考查拋物線的基本性質(zhì)和直線和拋物線的綜合問題.直線和圓錐曲線的綜合題是高考的熱點要重視,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2或-3 | B. | -2或3 | C. | $\frac{3}{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com