6.已知向量$\overrightarrow{a}$=(m-1,2),$\overrightarrow$=(m,-3),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m等于( 。
A.2或-3B.-2或3C.$\frac{3}{5}$D.3

分析 根據(jù)題意,由$\overrightarrow{a}$⊥$\overrightarrow$可得$\overrightarrow{a}$•$\overrightarrow$=0,結(jié)合向量的數(shù)量積計算公式可得m(m-1)+2×(-3)=0,解可得m的值,即可得答案.

解答 解:根據(jù)題意,量$\overrightarrow{a}$=(m-1,2),$\overrightarrow$=(m,-3),
若$\overrightarrow{a}$⊥$\overrightarrow$,則有$\overrightarrow{a}$•$\overrightarrow$=0,即m(m-1)+2×(-3)=0,
解可得m=-2或3;
故選:B.

點評 本題考查向量數(shù)量積的運算,關(guān)鍵是利用向量垂直與向量數(shù)量積的關(guān)系得到關(guān)于m的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓錐的表面積為6,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面半徑為( 。
A.$\sqrt{\frac{2}{π}}$B.$\sqrt{\frac{1}{π}}$C.$\sqrt{2π}$D.$\sqrt{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2x+mlnx(m∈R),g(x)=(x-$\frac{3}{4}$)ex
(1)若m=-1,函數(shù)φ(x)=f(x)-[x2-(2+$\frac{1}{a}$)x](0<x≤e)的最小值為2,求實數(shù)a的值;
(2)若f(x)存在兩個極值點x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.拋物線y2=4x的焦點為F,經(jīng)過F的直線與拋物線在x軸上方的部分相交于點A,與準線l交于點B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面積是4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點A(1,y1),B(9,y2)是拋物線y2=2px(p>0)上的兩點,y2>y1>0,點F是它的焦點,若|BF|=5|AF|,則y12+y2的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-x3+1+a($\frac{1}{e}$≤x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是(  )
A.[0,e3-4]B.[0,$\frac{1}{{e}^{3}}$+2]C.[$\frac{1}{{e}^{3}}$+2,e3-4]D.[e3-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將$\root{3}{2\sqrt{2}}$化為分數(shù)指數(shù)冪的形式為( 。
A.${2}^{\frac{1}{2}}$B.${2}^{\frac{1}{3}}$C.${2}^{\frac{5}{6}}$D.${2}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸被圓x2+y2=b2與x軸的兩個交點三等分,則橢圓的離心率是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點(0,4)且與拋物線y2=8x只有一個公共點的直線共有( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

同步練習(xí)冊答案