【題目】已知曲線.
(1)用函數(shù)的形式表示曲線;
(2)若直線與曲線有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若點(diǎn)的坐標(biāo)為,為曲線上的點(diǎn),求的最小值.
【答案】(1); (2); (3).
【解析】
(1)由曲線,當(dāng)時(shí),得到,當(dāng)時(shí),得,即可求解;
(2)根據(jù)直線與圓的位置關(guān)系,以及直線與雙曲線的位置關(guān)系,結(jié)合圖象,即可求解;
(3)分別求得當(dāng)和時(shí),的最小值,即可求解.
(1)由題意,曲線,
當(dāng)時(shí),曲線,則,其中;
當(dāng)時(shí),曲線,則,其中,
所以函數(shù)的解析式為 .
(2)若直線與曲線有兩個(gè)公共點(diǎn),
則圓心到直線的距離滿足,解得,
若直線與曲線和各有一個(gè)公共點(diǎn),
其中曲線的漸近線的方程為,
則由圖象可得,
所以實(shí)數(shù)的取值范圍是.
(3)當(dāng)時(shí),,
由得,當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,
又由,所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時(shí),是否存在,使得成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線經(jīng)過點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;
(3)若過雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)y=f(x),x∈D,若存在閉區(qū)間[a,b]和常數(shù)C,使得對(duì)任意x∈[a,b]都有f(x)=C,稱f(x)為“橋函數(shù)”.
(1)作出函數(shù)的圖象,并說明f(x)是否為“橋函數(shù)”?(不必證明)
(2)設(shè)f(x)定義域?yàn)?/span>R,判斷“f(x)為奇函數(shù)”是“為’橋函數(shù)’”的什么條件?給出你的結(jié)論并說明理由;
(3)若函數(shù)是“橋函數(shù)”,求常數(shù)m、n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(2)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,證明:
(Ⅰ);
(Ⅱ)對(duì)一切成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P–ABCD中,,.
(1)設(shè)AC與BD相交于點(diǎn)M,,且平面PCD,求實(shí)數(shù)m的值;
(2)若,,,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)與在給定的區(qū)間上滿足恒成立,則稱這兩個(gè)函數(shù)在該區(qū)間上“和諧”。
(1)若函數(shù)與在R上和諧,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)與在上和諧,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,E,F分別為AB的三等分點(diǎn),,若沿著FG,ED折疊使得點(diǎn)A和B重合,如圖2所示,連結(jié)GC,BD.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com