【題目】已知函數(shù).

1)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

2)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,證明:

(Ⅰ);

(Ⅱ)對(duì)一切成立.

【答案】(1)兩個(gè)零點(diǎn);(2)(I)見(jiàn)解析;(Ⅱ)見(jiàn)解析

【解析】

(1)對(duì)求導(dǎo),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在性定理即可得出零點(diǎn)的個(gè)數(shù);

(2) (Ⅰ)對(duì)函數(shù)求導(dǎo),由(1)得出的范圍,進(jìn)而得到,利用誘導(dǎo)公式即可得出;

(Ⅱ)由(Ⅰ)得出 >>,結(jié)合的單調(diào)性確定,且,對(duì)n為偶數(shù)和奇數(shù)進(jìn)行分類(lèi)討論,即可得出對(duì)一切成立.

(1)

當(dāng)時(shí),

上單調(diào)遞減,,上無(wú)零點(diǎn)

當(dāng)時(shí),,上單調(diào)遞增,

上有唯一零點(diǎn)

當(dāng)時(shí),,上單調(diào)遞減

,上有唯一零點(diǎn)

綜上,函數(shù)在區(qū)間上有兩個(gè)零點(diǎn)。

2

I)由(1)知無(wú)極值點(diǎn);在有極小值點(diǎn),即為;

有極大值點(diǎn),即為,同理可得,在有極小值點(diǎn),

有極值點(diǎn).

,,由函數(shù)單調(diào)遞增,

,

單調(diào)遞減得

;

(Ⅱ)同理, >>

上單調(diào)遞減得

,且

當(dāng)n為偶數(shù)時(shí),從開(kāi)始相鄰兩項(xiàng)配對(duì),每組和均為負(fù)值,

,結(jié)論成立;

當(dāng)n為奇數(shù)時(shí),從開(kāi)始相鄰兩項(xiàng)配對(duì),每組和均為負(fù)值,還多出最后一項(xiàng)也是負(fù)值,即,結(jié)論也成立。

綜上,對(duì)一切,成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知平面,,.

(1) 求證:;

(2) 求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、為橢圓)和雙曲線(xiàn)的公共頂點(diǎn),、分為雙曲線(xiàn)和橢圓上不同于、的動(dòng)點(diǎn),且滿(mǎn)足,設(shè)直線(xiàn)、的斜率分別為、、、.

1)求證:點(diǎn)、、三點(diǎn)共線(xiàn);

2)求的值;

3)若、分別為橢圓和雙曲線(xiàn)的右焦點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下命題:

若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)?/span>{0};

若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);

若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);

若函數(shù)fx)存在反函數(shù)f1x),且f1x)與fx)不完全相同,則fx)與f1x)圖象的公共點(diǎn)必在直線(xiàn)y=x上;

其中真命題的序號(hào)是 .(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201935日,國(guó)務(wù)院總理李克強(qiáng)作出的政府工作報(bào)告中,提到要懲戒學(xué)術(shù)不端,力戒學(xué)術(shù)不端,力戒浮躁之風(fēng).教育部2014年印發(fā)的《學(xué)術(shù)論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)術(shù)論文送3位同行專(zhuān)家進(jìn)行評(píng)議,3位專(zhuān)家中有2位以上(含3位)專(zhuān)家評(píng)議意見(jiàn)為不合格的學(xué)術(shù)論文,將認(rèn)定為存在問(wèn)題學(xué)術(shù)論文.有且只有1位專(zhuān)家評(píng)議意見(jiàn)為不合格的學(xué)術(shù)論文,將再送另外2位同行專(zhuān)家(不同于前3位專(zhuān)家)進(jìn)行復(fù)評(píng),2位復(fù)評(píng)專(zhuān)家中有1位以上(含1位)專(zhuān)家評(píng)議意見(jiàn)為不合格的學(xué)術(shù)論文,將認(rèn)定為存在問(wèn)題學(xué)術(shù)論文.設(shè)每篇學(xué)術(shù)論文被每位專(zhuān)家評(píng)議為不合格的概率均為,且各篇學(xué)術(shù)論文是否被評(píng)議為不合格相互獨(dú)立.

1)若,求抽檢一篇學(xué)術(shù)論文,被認(rèn)定為存在問(wèn)題學(xué)術(shù)論文的概率;

2)現(xiàn)擬定每篇抽檢論文不需要復(fù)評(píng)的評(píng)審費(fèi)用為900元,需要復(fù)評(píng)的總評(píng)審費(fèi)用1500元;若某次評(píng)審抽檢論文總數(shù)為3000篇,求該次評(píng)審費(fèi)用期望的最大值及對(duì)應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn).

1)用函數(shù)的形式表示曲線(xiàn)

2)若直線(xiàn)與曲線(xiàn)有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;

3)若點(diǎn)的坐標(biāo)為,為曲線(xiàn)上的點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在上、以1為周期的函數(shù),若上的值域?yàn)?/span>,則在區(qū)間上的值域?yàn)?/span>____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),給出以下四個(gè)命題,其中真命題的序號(hào)是_______.

時(shí),單調(diào)遞減且沒(méi)有最值;

②方程一定有解;

③如果方程有解,則解的個(gè)數(shù)一定是偶數(shù);

是偶函數(shù)且有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知條件P①是奇函數(shù);②值域?yàn)?/span>R;③函數(shù)圖象經(jīng)過(guò)第四象限。則下列函數(shù)中滿(mǎn)足條件Р的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案