分析 不妨設AC=$\sqrt{2}$,則AB=AD=1.在△ABD中,由余弦定理可得:解得BD.可得cosB,sinB.在△ABC中,由正弦定理即可得出.
解答 解:不妨設AC=$\sqrt{2}$,則AB=AD=1.
在△ABD中,由余弦定理可得:BD2=1+1-2cos∠BAD=2-$\frac{2}{3}$=$\frac{4}{3}$,解得BD=$\frac{2\sqrt{3}}{3}$.
取BD的中點E,連接AE,
則cosB=$\frac{BE}{AB}$=$\frac{\frac{\sqrt{3}}{3}}{1}$=$\frac{\sqrt{3}}{3}$,sinB=$\frac{\sqrt{6}}{3}$.
在△ABC中,由正弦定理可得:$\frac{\sqrt{2}}{\frac{\sqrt{6}}{3}}$=$\frac{1}{sinC}$,解得sinC=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.
點評 本題考查了正弦定理余弦定理、等腰三角形的性質(zhì)、直角三角形的邊角關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2x+3 | B. | y=x2+3 | C. | y=2x | D. | y=lgx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{9}{4}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com