已知x,y為實數(shù),且滿足
(x-1)3+2014(x-1)=-1
(y-1)3+2014(y-1)=1
,則x+y=( 。
A、2B、1C、-1D、0
考點:函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件,構(gòu)造函數(shù)f(t)=t3+2014t,利用函數(shù)f(t)的奇偶性和單調(diào)性解方程即可.
解答: 解:設(shè)f(t)=t3+2014t,
則f(t)為奇函數(shù),且f'(t)=3t2+2014>0,
即函數(shù)f(t)單調(diào)遞增,
由題意可知f(x-1)=-1,f(y-1)=1,
即f(x-1)+f(y-1)=-1+1=0,
即f(x-1)=-f(y-1)=f(1-y),
∵函數(shù)f(t)單調(diào)遞增
∴x-1=1-y,
即x+y=2,
故選:A.
點評:本題主要考查函數(shù)奇偶性的應(yīng)用,利用條件構(gòu)造函數(shù)f(t)是解決本題的關(guān)鍵,綜合考查了函數(shù)的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一組樣本數(shù)據(jù)的莖葉圖,則這組數(shù)據(jù)的平均數(shù)等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把二進制數(shù)11(2)轉(zhuǎn)化為十進制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【坐標系與參數(shù)方程選做題】
在極坐標系中,射線θ=
π
3
(ρ≥0)與曲線C1:ρ=4sinθ的異于極點的交點為A,與曲線C2:ρ=8sinθ的異于極點的交點為B,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0∈R,
1
x0
>x0,命題q:?x∈R,x2>0,則命題p∨q,p∧q,p∨(¬q),p∧(¬q)中真命題有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中最小正周期為
π
2
的是(  )
A、y=|sin4x|
B、y=sinxcos(x+
π
6
)
C、y=sin(cosx)
D、y=sin4x+cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH∥平面AEF;
(Ⅲ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個函數(shù)中,以π為最小正周期,且在區(qū)間(
π
2
,π)上為減函數(shù)的是(  )
A、y=2|sinx|
B、y=sin2x
C、y=2|cosx|
D、y=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C的內(nèi)接正方形相對的兩個頂點的坐標分別為A(1,-1),B(3,5);
(I)求圓C的方程
(II)若過點M(-2,0)的直線與圓C有且只有一個公共點,求直線l的方程.

查看答案和解析>>

同步練習冊答案