15.已知楊輝三角,將第4行的第一個(gè)數(shù)乘以1,第2個(gè)數(shù)乘以2,第3個(gè)數(shù)乘以4,第4個(gè)數(shù)乘以8后,這一行所以所有數(shù)字之和等于27(用數(shù)字作答):若等比數(shù)列{an}的前項(xiàng)是a1,公比是q(q≠1),將楊輝三角的第n+1行的第1個(gè)數(shù)乘以a1,第2個(gè)數(shù)乘以a2,…,第n+1個(gè)數(shù)乘以an+1后,這一行所有數(shù)字之和等于a1(1+q)n(用a1,q.n表示)

分析 利用等比數(shù)列的性質(zhì),及二項(xiàng)展開式,即可得出結(jié)論.

解答 解:將第4行的第一個(gè)數(shù)乘以1,第2個(gè)數(shù)乘以2,第3個(gè)數(shù)乘以4,第4個(gè)數(shù)乘以8后,這一行所以所有數(shù)字之和等于1+6+12+8=27;
將楊輝三角的第n+1行的第1個(gè)數(shù)乘以a1,第2個(gè)數(shù)乘以a2,…,第n+1個(gè)數(shù)乘以an+1后,這一行所有數(shù)字之和等于a1Cn0+a2Cn1+…+an+1Cnn=a1(Cn0+qCn1+…+qnCnn)=a1(1+q)n,
故答案為:27;a1(1+q)n

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),及二項(xiàng)展開式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱點(diǎn)的坐標(biāo)是(  )
A.(-5,-2)B.(-4,-1)C.(-6,-3)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩點(diǎn)F1(-1,0),F(xiàn)(1,0),且|F1F2|是|PF1|與|PF2|的等差數(shù)列中項(xiàng),則動(dòng)點(diǎn)P所形成的軌跡的離心率是(  )
A.$\frac{\sqrt{7}}{4}$B.2C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形數(shù)      N(n,4)=n2
五邊形數(shù)      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六邊形數(shù)      N(n,6)=2n2-n
可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(10,24)=1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知下列一組數(shù)據(jù)等式:
s1=1;
s2=2+3=5
s3=4+5+6=15
s4=7+8+9+10=34
s5=11+12+13+14+15=65
s6=16+17+18+19+20+21=111;

(1)寫出s7對(duì)應(yīng)的等式;
(2)先求出sn對(duì)應(yīng)等式的第一項(xiàng),并寫出sn對(duì)應(yīng)的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE,CG=$\frac{1}{2}$DE.
(1)證明:面GEF⊥面AEF;
(2)求二面角B-EG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個(gè)單位向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow$.
(1)已知$\overrightarrow{a}$⊥$\overrightarrow$,若$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,求k的值;
(2)若A,B,D三點(diǎn)共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,x∈R,則f(x)零點(diǎn)的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有以下四個(gè)等式:0+$\overrightarrow{a}$=$\overrightarrow{a}$,0•$\overrightarrow{a}$=0,3•$\overrightarrow{0}$=0,$\overrightarrow{a}$-$\overrightarrow{a}$=0.其中正確的等式的個(gè)數(shù)為(  )
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案