A. | m⊥l,m?α | B. | m⊥l,m∥α | C. | m∥l,m∩α≠∅ | D. | m⊥l,m⊥α |
分析 對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.
解答 解:設(shè)過l和l在平面α內(nèi)的射影的平面為β,則當(dāng)m⊥β時(shí),有m⊥l,m∥α或m?α,故A,B正確.
若m∥l,則m與平面α所成的夾角與l與平面α所成的夾角相等,即m與平面α斜交,故C正確.
若m⊥α,設(shè)l與m所成的角為θ,則0<θ<$\frac{π}{2}$.即m與l不可能垂直,故D錯(cuò)誤.
故選:D.
點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,考查學(xué)生的空間想象能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{3}{4}$,$\frac{5}{4}$) | B. | ($\frac{2\sqrt{17}}{17}$,4) | C. | ($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$) | D. | ($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(π)<f(3)<f($\sqrt{2}$) | B. | f(π)<f($\sqrt{2}$)<f(3) | C. | f($\sqrt{2}$)<f(3)<f(π) | D. | f($\sqrt{2}$)<f(π)<f(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 3 | 6 | 6 | 3 | ||
贊成人數(shù) | 2 | 4 | 5 | 4 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\fracj3fpdpz{|PF|}$=p | B. | $\fracbjtv9zj{|PF{|}^{2}}$=p | C. | $\fracllzlvht{|PF|}$=2p | D. | $\frac{bjv99lx^{2}}{|PF|}$=$\frac{p}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{19}{3}$ | B. | $\frac{53}{8}$ | C. | $\frac{171}{6}$ | D. | $\frac{185}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com