【題目】已知f(x)是定義在[m,n]上的奇函數(shù),且f(x)在[m,n]上的最大值為a,則函數(shù)F(x)=f(x)+3在[m,n]上的最大值與最小值之和為( )
A.2a+3
B.2a+6
C.6-2a
D.6

【答案】D
【解析】因為奇函數(shù)f(x)在[m,n]上的最大值為a,所以它在[m,n]上的最小值為-a,所以函數(shù)F(x)=f(x)+3在[m,n]上的最大值與最小值之和為a+3+(-a+3)=6.
故答案為:D.由奇函數(shù)f(x)的對稱性得到F(x)的對稱性,從而得到F(x)在區(qū)間是的最大值與最小值的和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值4,最小值1,設(shè)

(1)求的值;

(2)不等式上恒成立,求實數(shù)的取值范圍;

(3)方程有四個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x1,x∈{x∈N|1≤x≤4},則函數(shù)f(x)的值域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓經(jīng)過點.

(1)求橢圓的方程;

(2)若不過點的直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)=1時,求函數(shù)在區(qū)間[-2,3]上的值域;

(2)函數(shù)上具有單調(diào)性,求實數(shù)的取值范圍;

(3)求函數(shù)上的最小值的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,半徑為的圓相切,圓心軸上且在直線的右上方

1求圓的方程;

2若直線過點且與圓交于兩點軸上方,B在軸下方,問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某廠產(chǎn)品的次品率為2%,估算該廠8 000件產(chǎn)品中合格品的件數(shù)大約為(  )

A. 160 B. 7 840

C. 7 998 D. 7 800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)是自然對數(shù)的底數(shù)).

(1)證明:存在一條定直線與曲線都相切;

(2)若恒成立,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

(1)若曲線在點處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案