分析 an=$\sqrt{{S}_{2n-1}}$(n∈N*).a(chǎn)n=$\sqrt{\frac{(2n-1)({a}_{1}+{a}_{2n-1})}{2}}$=$\sqrt{(2n-1){a}_{n}}$,解得an=2n-1.$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂項求和”方法與數(shù)列的單調性即可得出.
解答 解:∵an=$\sqrt{{S}_{2n-1}}$(n∈N*).
∴an=$\sqrt{\frac{(2n-1)({a}_{1}+{a}_{2n-1})}{2}}$=$\sqrt{(2n-1){a}_{n}}$,解得an=2n-1.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$$<\frac{1}{2}$.
∵對任意正整數(shù)n,都有λ>$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$恒成立,∴$λ≥\frac{1}{2}$.
則實數(shù)λ的取值范圍為$λ≥\frac{1}{2}$.
故答案為:$[\frac{1}{2},+∞)$.
點評 本題考查了“裂項求和法”、數(shù)列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | an=$\frac{1}{2}$n | B. | an=n${\;}^{\frac{1}{2}}$ | C. | an=($\frac{1}{2}$)n | D. | an=2n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com