|
2 |
4 |
5 |
3 |
5 |
|
x2 |
3 |
2 |
2 |
4
| ||
5 |
3
| ||
5 |
4
| ||
5 |
3
| ||
5 |
4 |
5 |
3 |
5 |
9n2 |
3 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
x2 |
m |
y2 |
n |
(3y)2 |
m |
y2 |
n |
9n+m |
mn |
mn |
9n+m |
x2 |
m |
y2 |
n |
(3y)2 |
m |
y2 |
n |
9n+m |
mn |
9n+m |
mn |
mn |
9n+m |
|
m |
9n+m |
m |
n |
m |
n |
mn |
9n+m |
m |
n |
m |
n |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
2 |
3 |
4 |
3 |
4 |
|
kπ |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長(zhǎng)軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)和的坐標(biāo);
(2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱(chēng)點(diǎn)是曲線在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿(mǎn)分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長(zhǎng)軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)和的坐標(biāo);
(2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱(chēng)點(diǎn)是曲線在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市普陀區(qū)高考數(shù)學(xué)二模試卷 (文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com