16.某四棱錐的三視圖如圖所示,則該四棱錐的體積為( 。
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

分析 根據(jù)三視圖知幾何體是四棱錐為棱長(zhǎng)為2的正方體一部分,畫(huà)出直觀圖,由正方體的性質(zhì)求出幾何體的高,由椎體的體積公式求出該四棱錐的體積.

解答 解:根據(jù)三視圖知幾何體是:四棱錐P-ABCD為棱長(zhǎng)為2的正方體一部分,
直觀圖如圖所示:C是棱的中點(diǎn),
由正方體的性質(zhì)可得,
頂點(diǎn)P到底面ABCD的距離是棱長(zhǎng)2,
∴該四棱錐的體積V=$\frac{1}{3}×\frac{1}{2}×(2+1)×2×2$=2,
故選:A.

點(diǎn)評(píng) 本題考查由三視圖求幾何體的體積,在三視圖與直觀圖轉(zhuǎn)化過(guò)程中,以一個(gè)正方體為載體是很好的方式,使得作圖更直觀,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

如圖,在四棱錐中,平面平面,是等邊三角形.已知,,.

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)當(dāng)點(diǎn)位于線段什么位置時(shí),平面?

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某幾何體的三視圖如圖所示,其中正視圖和俯視圖均為全等的正方形(邊長(zhǎng)為2),側(cè)視圖為等腰直角三角形(直角邊的長(zhǎng)為2),則該幾何體的表面積是$12+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),設(shè)f(x)在x=x0處取得最小值,求證:f(x0)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在三棱柱ABC-A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1
(Ⅰ)求證:AC⊥平面AB1C1;
(Ⅱ)求二面角A1-BB1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,給出下列結(jié)論:
①f(x)的單調(diào)遞增區(qū)間是(0,2);
②函數(shù)y=f(x)的圖象與直線y=k(k∈R)至少有一個(gè)公共點(diǎn);
③函數(shù)y=f(x)的圖象與y=x3-2x2+x的圖象有三個(gè)公共點(diǎn),
其中正確的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示為某幾何體形狀的紙盒的三視圖,在此紙盒內(nèi)放一個(gè)小正四面體,若小正四面體在紙盒內(nèi)可以任意轉(zhuǎn)動(dòng),則小正四面體的棱長(zhǎng)的最大值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前10項(xiàng)和為30,它的前30項(xiàng)和為210,則前20項(xiàng)和為( 。
A.100B.120C.390D.540

查看答案和解析>>

同步練習(xí)冊(cè)答案