3.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,則$|{\overrightarrow a+\overrightarrow b}|$等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用兩個(gè)向量的數(shù)量積的定義計(jì)算求得結(jié)果.

解答 解:∵$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,
∴|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}•\overrightarrow$=1×1×cos$\frac{π}{3}$=$\frac{1}{2}$,
∴$|{\overrightarrow a+\overrightarrow b}|$2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}•\overrightarrow$=1+1+1=3,
∴$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{3}$,
故選:C.

點(diǎn)評 本題主要考查兩個(gè)向量的數(shù)量積的定義,求向量得模,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年陜西省高一下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

某單位有840名職工, 現(xiàn)采用系統(tǒng)抽樣方法, 抽取42人做問卷調(diào)查, 將840人按1, 2,…… , 840隨機(jī)編號, 則抽取的42人中, 編號落入?yún)^(qū)間[481, 720]的人數(shù)為

A.11 B.1 C.12 D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是正方體平面展開圖,在這個(gè)正方體中:
①BM與AF平行;
②CN與BE是異面直線;
③CN與BM成30°角;
④BM與ED垂直.
以上四種說法中,正確說法的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|+|m-x|(其中m∈R).
(1)當(dāng)m=2時(shí),求不等式f(x)≥6的解集;
(2)若不等式f(x)≥6對任意實(shí)數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sin x=-$\frac{1}{3}$,x是第四象限角,則tanx=$-\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用部分自然構(gòu)造如圖的數(shù)表:用aij(i≥j)表示第i行第j個(gè)數(shù)(i,j∈N+),使得ai1=aii=i.每行中的其他各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)之和.設(shè)第n(n∈N+)行的第二個(gè)數(shù)為bn(n≥2).
(1)寫出bn+1與bn的關(guān)系,并求bn(n≥2);
(2)設(shè)數(shù)列{cn}前n項(xiàng)和為Tn,且滿足${c_1}=1,{c_n}=\frac{1}{{{b_n}-1}},({n≥2})$,求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$),(0<a<1)
(1)求f(x)的解析式;
(2)判斷并證明f(x)的奇偶性與單調(diào)性;
(3)若不等式f(3t2-1)+f(4t-k)>0對任意t∈[1,3]都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足a1=1,a2=2,${a_{n+2}}=(1+{sin^2}\frac{nπ}{2}){a_n}+n•cos\frac{nπ}{2}$,則該數(shù)列的前20項(xiàng)和為1033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$與$\overrightarrow b$共線,則x=( 。
A.2B.-2C.$-2+\sqrt{5}$D.$-2-\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案