15.下列說(shuō)法錯(cuò)誤的是(  )
A.利用樣本數(shù)據(jù)的散點(diǎn)圖可以直觀判斷兩個(gè)變量是否可用線性關(guān)系表示
B.等高條形圖表示的是分類變量的百分比
C.比較兩個(gè)模型的擬合函數(shù)效果,可以比較殘差平方和的大小,殘差平方和越大的模型,擬合效果越好
D.與兩個(gè)比值相差越大,兩個(gè)分類變量相關(guān)的可能性就越大

分析 根據(jù)散點(diǎn)圖、“殘差”的意義、線性相關(guān)系數(shù)和相關(guān)指數(shù)的概念,
對(duì)選項(xiàng)中的命題作出分析、判斷正誤即可.

解答 解:對(duì)于A,當(dāng)散點(diǎn)圖成帶狀分布時(shí),判斷兩個(gè)變量相關(guān)性強(qiáng),否則相關(guān)性弱;
∴利用樣本點(diǎn)的散點(diǎn)圖可以直觀的判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示,A正確;
對(duì)于B,由等高條形圖的特點(diǎn)知,從等高條形圖可以粗略地看出兩個(gè)分類變量的百分比,B正確;
對(duì)于C,可用殘差平方和判斷模型的擬合效果,殘差平方和越小,模型的擬合效果越好,∴C錯(cuò)誤;
對(duì)于D,在列聯(lián)表中,與兩個(gè)比值相差越大,兩個(gè)分類變量相關(guān)的可能性就越大,D正確.
故選:C.

點(diǎn)評(píng) 本題考查了散點(diǎn)圖、“殘差”的意義、線性相關(guān)系數(shù)和相關(guān)指數(shù)的概念與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若x=15°,則sin4x-cos4x的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.記cos(-80°)=k,那么tan(-80o)=( 。
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=4cos({x-\frac{π}{2}})sin({x-\frac{π}{3}})-1$.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且三邊長(zhǎng)a,b,c成等差數(shù)列,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)求定積分$\int_1^3{|x-2|dx}$
(2)若復(fù)數(shù)Z1=a+2i(a∈R),Z2=3-4i(i為虛數(shù)單位)且$\frac{{Z}_{1}}{{Z}_{2}}$為純虛數(shù),求|Z1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求橢圓25x2+y2=25的長(zhǎng)軸和短軸的長(zhǎng)、焦點(diǎn)和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且滿足:$\sqrt{3}a=\sqrt{3}ccosB+bsinC$.
(1)求∠C的值;
(2)若$c=2\sqrt{3}$,求2a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知邊c=2,且asinA-asinB=2sinC-bsinB.
(1)若sinC+sin(B-A)=sin2A,求△ABC的面積;
(2)記AB邊的中點(diǎn)為M,求|CM|的最大值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若復(fù)數(shù)z=1-2i,則z+$\frac{1}{z}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案