【題目】已知函數(shù)f(x)= eax(a>0).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個(gè)數(shù).

【答案】
(1)解:當(dāng)a=2時(shí),f(x)= e2x.f( )=3e1,

又f′(x)= e2x,∴f′( )=2e1,

故所求切線方程為y﹣3e1=2e1(x﹣ ),即y= x+


(2)解:方程f(x)﹣1=0即f(x)=1.

f(x)的定義域?yàn)椋ī仭蓿?)∪(1,+∞),

當(dāng)x<﹣1或x>1時(shí),易知f(x)<0,故方程f(x)=1無解;

故只需考慮﹣1≤x≤1的情況,

f′(x)= e2x,

當(dāng)<a≤2時(shí),f′(x)≥0,所以f(x)區(qū)間[﹣1,1)上是增函數(shù),又易知f(0)=1,

所以方程f(x)=1只有一個(gè)根0;

當(dāng)a>2時(shí),由f′(x)=0可得x=± ,且0< <1,

由f′(x)>0可得﹣1≤x<﹣ <x<1,

由f′(x)<0可得﹣ <x< ,

所以f(x)單調(diào)增區(qū)間為[﹣1,﹣ )和( ,1)上是增函數(shù),

f(x)單調(diào)減區(qū)間為(﹣ , ),

由上可知f( )<f(0)<f(﹣ ),即f( )<1<f(﹣ ),

在區(qū)間(﹣ span> )上f(x)單調(diào)遞減,且f(0)=1,

所以方程f(x)=1有唯一的根x=0;

在 區(qū)間[﹣1,﹣ )上f(x)單調(diào)遞增,且f(﹣1)=0<1,f(﹣ )>1,

所以方程f(x)=1存在唯一的根0

在區(qū)間( ,1)上,由f( )<1,x→1時(shí),f(x)→+∞,

所以方程f(x)=1有唯一的根;

綜上所述:當(dāng)0<a≤2時(shí),方程f(x)=1有1個(gè)根;

當(dāng)a>2時(shí),方程f(x)=1有3個(gè)根


【解析】(1)當(dāng)a=2時(shí),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函數(shù)的導(dǎo)數(shù)f′(x),判斷函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性和最值之間的關(guān)系進(jìn)行判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時(shí),卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P(單位:分)Q(單位:分),在每部分做了20分鐘的條件下發(fā)現(xiàn)它們與投入時(shí)間m(單位:分鐘)的關(guān)系有經(jīng)驗(yàn)公式.

(1)試建立數(shù)學(xué)總成績y(單位:分)與對卷Ⅱ投入時(shí)間x(單位:分鐘)的函數(shù)關(guān)系式,并指明函數(shù)定義域;

(2)如何計(jì)劃使用時(shí)間,才能使得所得分?jǐn)?shù)最高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線交此拋物線于不同的兩個(gè)點(diǎn)

)當(dāng)直線過點(diǎn)時(shí),證明,為定值.

)當(dāng)時(shí),直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);反之,請說明理由.

)記,如果直線過點(diǎn),設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為.問是否存在一條直線和一個(gè)定點(diǎn),使得點(diǎn)到它們的距離相等?若存在,求出這條直線和這個(gè)定點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).

1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;

3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于軸的對稱點(diǎn)為,如果直線軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在首項(xiàng)為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項(xiàng)和Sn滿足 ?若存在,求出{an}的通項(xiàng)公式;若不存在,請說明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文樂隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)

間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8

分鐘,現(xiàn)小明.小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比

小明先正確解答完的概率;

(2)現(xiàn)從乙班成績優(yōu)秀的8名同學(xué)中任意抽取兩人,并對他們的答題情況進(jìn)行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在成立,則稱的不動(dòng)點(diǎn).如果函數(shù)

有且只有兩個(gè)不動(dòng)點(diǎn)0,2,且

(1)求函數(shù)的解析式;

(2)已知各項(xiàng)不為零的數(shù)列,求數(shù)列通項(xiàng)

(3)如果數(shù)列滿足,求證:當(dāng)時(shí),恒有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,梯形中,,,, ,將沿對角線折起.設(shè)折起后點(diǎn)的位置為,并且平面 平面.給出下面四個(gè)命題:

;②三棱錐的體積為;③ 平面;

平面平面.其中正確命題的序號是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在汶川大地震后對唐家山堰塞湖的搶險(xiǎn)過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個(gè)巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨(dú)立的,且命中的概率都是
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ.求ξ的分布列及數(shù)學(xué)期望E(ξ).( 結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊答案