分析 先根據(jù)函數(shù)奇偶性定義,解出奇函數(shù)f(x)和偶函數(shù)g(x)的表達(dá)式,將等式af(x)+g(2x)=0,令t=2x-2-x,則t>0,通過變形可得a=t+$\frac{2}{t}$,討論出右邊在x∈[$\frac{1}{2}$,1]的最大值,可以得出實(shí)數(shù)a的取值范圍.
解答 解:∵f(x)為定義在R上的奇函數(shù),g(x)為定義在R上的偶函數(shù)
∴f(-x)=-f(x),g(-x)=g(x)
又∵由f(x)+g(x)=2-x,結(jié)合f(-x)+g(-x)=-f(x)+g(x)=2x,
∴f(x)=-$\frac{1}{2}$(2x-2-x),g(x)=$\frac{1}{2}($2x+2-x)
等式af(x)+g(2x)=0,化簡(jiǎn)為-$\frac{a}{2}$(2x-2-x)+$\frac{1}{2}$(22x+2-2x)=0
∵$\frac{1}{2}$≤x≤1,
∴$\frac{\sqrt{2}}{2}$≤2x-2-x≤$\frac{3}{2}$
令t=2x-2-x,則t>0,因此將上面等式整理,得:a=t+$\frac{2}{t}$
∵$\frac{\sqrt{2}}{2}$≤t≤$\frac{3}{2}$
∴2$\sqrt{2}$≤t+$\frac{2}{t}$≤$\frac{5}{2}$$\sqrt{2}$
∵存在x0∈[$\frac{1}{2}$,1],使得等式af(x0)+g(2x0)=0成立,
∴a∈[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].
故答案為[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].
點(diǎn)評(píng) 本題以指數(shù)型函數(shù)為載體,考查了函數(shù)求表達(dá)式以及不等式恒成立等知識(shí)點(diǎn),屬于難題.合理地利用函數(shù)的基本性質(zhì),再結(jié)合換元法和基本不等式的技巧,是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 任意兩條直線確定一個(gè)平面 | |
B. | 三條平行直線最多確定三個(gè)平面 | |
C. | 棱長(zhǎng)為1的正方體的內(nèi)切球的表面積為4π | |
D. | 若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③④ | B. | ①④⑤ | C. | ②③④ | D. | ①②⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com