4.設(shè)復(fù)數(shù)z=$\frac{2+i}{(1+i)^{2}}$(i為虛數(shù)單位),則z的虛部是(  )
A.-1B.1C.-iD.i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z=$\frac{2+i}{(1+i)^{2}}$=$\frac{2+i}{2i}=\frac{(2+i)(-i)}{-2{i}^{2}}=\frac{1-2i}{2}=\frac{1}{2}-i$,
∴z的虛部是-1.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.經(jīng)過(guò)點(diǎn)A(1,2)和點(diǎn)B(3,m)的直線的傾斜角為45°,則實(shí)數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是( 。
A.f(x)是偶函數(shù)B.函數(shù)f(x)最小值為$\frac{3}{4}$
C.函數(shù)f(x)在(0,$\frac{π}{2}$)內(nèi)是減函數(shù)D.$\frac{π}{2}$是函數(shù)f(x)的一個(gè)周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)(2,1)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)直線l與圓O:x2+y2=2相切,與橢圓C相交于P,Q兩點(diǎn).求△OPQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線l⊥平面α,直線m?平面β,給出下列命題:
①α⊥β⇒l∥m;
②α∥β⇒l⊥m;
③l⊥m⇒α∥β
④l∥m⇒α⊥β
其中正確命題的序號(hào)是( 。
A.①②③B.②③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.拋物線y2=2px(p>0)的一條弦AB過(guò)焦點(diǎn)F,且|AF|=2,|BF|=3,則拋物線的方程為y2=$\frac{24}{5}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{1}{3}{x}^{2}+3,x∈[-3,0]}\\{\sqrt{9-{x}^{2}},x∈(0,3]}\end{array}\right.$,則${∫}_{-3}^{3}$f(x)dx=6+$\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知F1,F(xiàn)2是橢圓$\frac{x^2}{16}+\frac{y^2}{9}$=1的兩焦點(diǎn),P是橢圓第一象限的點(diǎn).若∠F1PF2=60°,則P的坐標(biāo)為$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$.
(1)求函數(shù)f(x)的最大值;
(2)已知△ABC中,角A,B,C為其內(nèi)角,若$f(B+C)=\frac{3}{2}$,求A的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案