13.函數(shù)$y=2sin({\frac{π}{3}-x})cos({\frac{π}{6}+x})$(x∈R)的最小值為0.

分析 利用$\frac{π}{6}+x+\frac{π}{3}-x=\frac{π}{2}$及二倍角公式化簡(jiǎn))y=1+cos(2x+$\frac{π}{3}$)即可.

解答 解:∵$\frac{π}{6}+x+\frac{π}{3}-x=\frac{π}{2}$
∴$y=2sin({\frac{π}{3}-x})cos({\frac{π}{6}+x})$
=2cos($\frac{π}{6}+x$)cos($\frac{π}{6}+x$)=1+cos(2x+$\frac{π}{3}$)≥0
 故答案為:0

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)、值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在平面直角坐標(biāo)系中,若點(diǎn)P(m-3,m+1)在第二象限,則m的取值范圍為( 。
A.-1<m<3B.m>3C.m<-1D.m>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x+2|+|x-a|(a∈R)
(1)若不等式f(x)+a≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知a2+b2+c2=1(a,b,c∈R),求證a+b+c≤$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$的離心率是$\frac{1}{2}$,橢圓C1焦點(diǎn)在x軸上并與C具有相同的離心率且過(guò)點(diǎn)$(2,-\sqrt{3})$,則橢圓C1的標(biāo)準(zhǔn)方程是$\frac{x^2}{8}+\frac{y^2}{6}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)復(fù)數(shù)z=a+i,a∈R,若復(fù)數(shù)z+$\frac{1}{z}$的虛部為$\frac{4}{5}$,則a等于( 。
A.1B.±1C.2D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.將時(shí)鐘撥慢10分鐘,則分針轉(zhuǎn)過(guò)的弧度數(shù)是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,sinA=sinB是A=B的( 。
A.必要非充分條件B.充分非必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.解答題:$x\;,\;\;y∈[{-\frac{π}{4}\;,\;\;\frac{π}{4}}]$,a∈R,且$\left\{\begin{array}{l}{x^5}+sinx-4a=0\\ 8{y^5}+\frac{1}{4}sin2y+a=0\end{array}\right.$,求$cos({x+2y+\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知全集U=R,M=$\{x|y=\sqrt{x-2}\}$,N={x|x<1或x>3}.求:
(1)集合M∪N;
(2)M∩(∁UN).

查看答案和解析>>

同步練習(xí)冊(cè)答案