分析 (1)設(shè)CH=x,由BC-CH表示出BH,利用銳角三角函數(shù)定義表示出tan∠CAH,分兩種情況考慮:
1°、當(dāng)1-$\frac{10-x}{5}•\frac{x}{5}$=0,即x=5時(shí),此時(shí)∠BAH=∠CAH=45°,∠BAC=90°;
2°、當(dāng)1-$\frac{10-x}{5}•\frac{x}{5}$≠0,即x≠5時(shí),tan∠BAC=tan(∠BAH+∠CAH),利用兩角和與差的正切函數(shù)公式化簡(jiǎn),將各自的值代入得到其值大于0,由∠BAC為三角形內(nèi)角,得到∠BAC小于90度,綜上,得到A看B,C兩人視角的最大值;
(2)利用銳角三角函數(shù)定義表示出tan∠ABH與tan∠ACH,得到∠ABH=2∠ACH,利用二倍角的正切函數(shù)公式列出關(guān)系式,整理后表示出h2,根據(jù)x的范圍求出h2的范圍,即可求出h的范圍.
解答 解:(1)設(shè)CH=x,∴BH=10-x,x∈(0,10),tan∠CAH=$\frac{x}{5}$,
1°、當(dāng)1-$\frac{10-x}{5}•\frac{x}{5}$=0,即x=5時(shí),此時(shí)∠BAH=∠CAH=45°,
∴∠BAC=90°;
2°、當(dāng)1-$\frac{10-x}{5}•\frac{x}{5}$≠0,即x≠5時(shí),tan∠BAC=tan(∠BAH+∠CAH)=$\frac{50}{(x-5)^{2}}$>0,
∵0<∠BAC<180°,∴∠BAC<90°,
綜上:AH=BH=5時(shí),最大視角是90°;
(2)∵tan∠ABH=$\frac{h}{10-x}$,tan∠ACH=$\frac{h}{x}$,
∴tan∠ABH=tan2∠ACH,
∴$\frac{h}{10-x}=\frac{2•\frac{h}{x}}{1-(\frac{h}{x})^{2}}$,
整理得:h2=3x2-20x=$\frac{1}{3}$(x-$\frac{10}{3}$)2-$\frac{100}{3}$,
∵x∈(0,10)時(shí),h2∈(0,100),
∴h∈(0,10).
點(diǎn)評(píng) 此題考查了兩角和與差的正切函數(shù)公式,二倍角的正切函數(shù)公式,銳角三角函數(shù)定義,利用了分類(lèi)討論的思想,熟練掌握公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e-1 | B. | e+1 | C. | e | D. | $\frac{1}{e}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com